» Articles » PMID: 23809764

Eukaryote-specific Insertion Elements Control Human ARGONAUTE Slicer Activity

Overview
Journal Cell Rep
Publisher Cell Press
Date 2013 Jul 2
PMID 23809764
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5'-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift.

Citing Articles

The structural basis for RNA slicing by human Argonaute2.

Mohamed A, Wang P, Bartel D, Vos S Cell Rep. 2025; 44(1):115166.

PMID: 39932188 PMC: 11893014. DOI: 10.1016/j.celrep.2024.115166.


Structural insights into RNA cleavage by PIWI Argonaute.

Li Z, Xu Q, Zhong J, Zhang Y, Zhang T, Ying X Nature. 2025; 639(8053):250-259.

PMID: 39814893 DOI: 10.1038/s41586-024-08438-1.


The structural basis for RNA slicing by human Argonaute2.

Mohamed A, Wang P, Bartel D, Vos S bioRxiv. 2024; .

PMID: 39229170 PMC: 11370433. DOI: 10.1101/2024.08.19.608718.


Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans.

Kotagama K, Grimme A, Braviner L, Yang B, Sakhawala R, Yu G Nucleic Acids Res. 2024; 52(9):4985-5001.

PMID: 38471816 PMC: 11109956. DOI: 10.1093/nar/gkae170.


Research progress in mitochondrial gene editing technology.

Wang Y, Wang Y, Chen Y, Yan Q, Lin A Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023; 52(4):460-472.

PMID: 37643980 PMC: 10495247. DOI: 10.3724/zdxbyxb-2023-0129.


References
1.
Hutvagner G, Simard M . Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2007; 9(1):22-32. DOI: 10.1038/nrm2321. View

2.
Brunger A . Version 1.2 of the Crystallography and NMR system. Nat Protoc. 2007; 2(11):2728-33. DOI: 10.1038/nprot.2007.406. View

3.
Song J, Smith S, Hannon G, Joshua-Tor L . Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004; 305(5689):1434-7. DOI: 10.1126/science.1102514. View

4.
Lowe T, Eddy S . tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):955-64. PMC: 146525. DOI: 10.1093/nar/25.5.955. View

5.
Otwinowski Z, Minor W . Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307-26. DOI: 10.1016/S0076-6879(97)76066-X. View