» Articles » PMID: 23749987

DMEAS: DNA Methylation Entropy Analysis Software

Overview
Journal Bioinformatics
Specialty Biology
Date 2013 Jun 11
PMID 23749987
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Summary: DMEAS is the first user-friendly tool dedicated to analyze the distribution of DNA methylation patterns for the quantification of epigenetic heterogeneity. It supports the analysis of both locus-specific and genome-wide bisulfite sequencing data. DMEAS progressively scans the mapping results of bisulfite sequencing reads to extract DNA methylation patterns for contiguous CpG dinucleotides. It determines the DNA methylation level and calculates methylation entropy for genomic segments to enable the quantitative assessment of DNA methylation variations observed in cell populations.

Availability And Implementation: DMEAS program, user guide and all the testing data are freely available from http://sourceforge.net/projects/dmeas/files/

Citing Articles

Low-pass nanopore sequencing for measurement of global methylation levels in plants.

Liau Y, Whibley A, Hill A, Vanga B, Pither-Joyce M, Hilario E BMC Genomics. 2024; 25(1):1235.

PMID: 39716067 PMC: 11668104. DOI: 10.1186/s12864-024-11145-w.


Methylation entropy landscape of Chinese long-lived individuals reveals lower epigenetic noise related to human healthy aging.

Wang H, Xiao F, Gao Z, Guo L, Yang L, Li G Aging Cell. 2024; 23(7):e14163.

PMID: 38566438 PMC: 11258444. DOI: 10.1111/acel.14163.


Estimating genome-wide DNA methylation heterogeneity with methylation patterns.

Lin P, Chang Y, Huang Y, Chen P Epigenetics Chromatin. 2023; 16(1):44.

PMID: 37941029 PMC: 10634068. DOI: 10.1186/s13072-023-00521-7.


msPIPE: a pipeline for the analysis and visualization of whole-genome bisulfite sequencing data.

Kim H, Sim M, Park N, Kwon K, Kim J, Kim J BMC Bioinformatics. 2022; 23(1):383.

PMID: 36123620 PMC: 9487059. DOI: 10.1186/s12859-022-04925-2.


Ten Years of EWAS.

Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N Adv Sci (Weinh). 2021; 8(20):e2100727.

PMID: 34382344 PMC: 8529436. DOI: 10.1002/advs.202100727.


References
1.
Zhang Y, Liu H, Lv J, Xiao X, Zhu J, Liu X . QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res. 2011; 39(9):e58. PMC: 3089487. DOI: 10.1093/nar/gkr053. View

2.
Xie H, Wang M, de Andrade A, de F Bonaldo M, Galat V, Arndt K . Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res. 2011; 39(10):4099-108. PMC: 3105398. DOI: 10.1093/nar/gkr017. View

3.
Rohde C, Zhang Y, Reinhardt R, Jeltsch A . BISMA--fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics. 2010; 11:230. PMC: 2877691. DOI: 10.1186/1471-2105-11-230. View

4.
Su J, Yan H, Wei Y, Liu H, Liu H, Wang F . CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res. 2012; 41(1):e4. PMC: 3592415. DOI: 10.1093/nar/gks829. View

5.
Tsai A, Chen D, Lin M, Hsieh J, Okitsu C, Taghva A . Heterogeneity and randomness of DNA methylation patterns in human embryonic stem cells. DNA Cell Biol. 2012; 31(6):893-907. DOI: 10.1089/dna.2011.1477. View