» Articles » PMID: 23705660

Allosteric Activation of the Par-6 PDZ Via a Partial Unfolding Transition

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2013 May 28
PMID 23705660
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins.

Citing Articles

Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis.

Cowan B, Beveridge D, Thayer K J Phys Chem B. 2023; 127(3):623-633.

PMID: 36626697 PMC: 9884075. DOI: 10.1021/acs.jpcb.2c06546.


Phosphorylation-induced changes in the PDZ domain of Dishevelled 3.

Jurasek M, Kumar J, Paclikova P, Kumari A, Tripsianes K, Bryja V Sci Rep. 2021; 11(1):1484.

PMID: 33452274 PMC: 7810883. DOI: 10.1038/s41598-020-79398-5.


Spectral analysis of molecular dynamics simulations on PDZ: MD sectors.

Lakhani B, Thayer K, Black E, Beveridge D J Biomol Struct Dyn. 2019; 38(3):781-790.

PMID: 31262238 PMC: 7307555. DOI: 10.1080/07391102.2019.1588169.


Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition.

Liu X, Fuentes E Int Rev Cell Mol Biol. 2019; 343:129-218.

PMID: 30712672 PMC: 7185565. DOI: 10.1016/bs.ircmb.2018.05.013.


Distinct Roles for Conformational Dynamics in Protein-Ligand Interactions.

Liu X, Speckhard D, Shepherd T, Sun Y, Hengel S, Yu L Structure. 2016; 24(12):2053-2066.

PMID: 27998539 PMC: 5488749. DOI: 10.1016/j.str.2016.08.019.


References
1.
Kern D, Zuiderweg E . The role of dynamics in allosteric regulation. Curr Opin Struct Biol. 2003; 13(6):748-57. DOI: 10.1016/j.sbi.2003.10.008. View

2.
Volkman B, Lipson D, Wemmer D, Kern D . Two-state allosteric behavior in a single-domain signaling protein. Science. 2001; 291(5512):2429-33. DOI: 10.1126/science.291.5512.2429. View

3.
Tyler R, Murray N, Peterson F, Volkman B . Native-state interconversion of a metamorphic protein requires global unfolding. Biochemistry. 2011; 50(33):7077-9. PMC: 3160782. DOI: 10.1021/bi200750k. View

4.
Nishimura C, Dyson H, Wright P . Enhanced picture of protein-folding intermediates using organic solvents in H/D exchange and quench-flow experiments. Proc Natl Acad Sci U S A. 2005; 102(13):4765-70. PMC: 555694. DOI: 10.1073/pnas.0409538102. View

5.
Gianni S, Brunori M, Jemth P, Oliveberg M, Zhang M . Distinguishing between smooth and rough free energy barriers in protein folding. Biochemistry. 2009; 48(49):11825-30. DOI: 10.1021/bi901585q. View