» Articles » PMID: 23702419

Adding Dynamics to the Human Connectome Project with MEG

Overview
Journal Neuroimage
Specialty Radiology
Date 2013 May 25
PMID 23702419
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the resting state and during performance of motor, working memory and language tasks. These data will be available to the general community. Additionally, using the cortical parcellation scheme common to all imaging modalities, the HCP will provide processing pipelines for calculating connection matrices as a function of time and frequency. Together with structural and functional data generated using magnetic resonance imaging methods, these data represent a unique opportunity to investigate brain network connectivity in a large cohort of normal adult human subjects. The analysis pipeline software and the dynamic connectivity matrices that it generates will all be made freely available to the research community.

Citing Articles

Volume-optimal persistence homological scaffolds of hemodynamic networks covary with MEG theta-alpha aperiodic dynamics.

Nguyen N, Hou T, Amico E, Zheng J, Huang H, Kaplan A Med Image Comput Comput Assist Interv. 2025; 15003:519-529.

PMID: 39949393 PMC: 11816146. DOI: 10.1007/978-3-031-72384-1_49.


Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology.

Singh M, Braver T, Cole M, Ching S Proc Natl Acad Sci U S A. 2025; 122(3):e2409577121.

PMID: 39823302 PMC: 11761305. DOI: 10.1073/pnas.2409577121.


Whole brain functional connectivity: Insights from next generation neural mass modelling incorporating electrical synapses.

Forrester M, Petros S, Cattell O, Lai Y, Odea R, Sotiropoulos S PLoS Comput Biol. 2024; 20(12):e1012647.

PMID: 39637233 PMC: 11651611. DOI: 10.1371/journal.pcbi.1012647.


Stationary correlation pattern in highly non-stationary MEG recordings of healthy subjects and its relation to former EEG studies.

Marin-Garcia A, Arzate-Mena J, Corsi-Cabrera M, Munoz-Torres Z, Olguin-Rodriguez P, Rios-Herrera W PLoS One. 2024; 19(10):e0307378.

PMID: 39436944 PMC: 11495582. DOI: 10.1371/journal.pone.0307378.


Genetic fingerprinting with heritable phenotypes of the resting-state brain network topology.

Pourmotabbed H, Clarke D, Chang C, Babajani-Feremi A Commun Biol. 2024; 7(1):1221.

PMID: 39349968 PMC: 11443053. DOI: 10.1038/s42003-024-06807-0.


References
1.
Crone N, Miglioretti D, Gordon B, Sieracki J, Wilson M, Uematsu S . Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1999; 121 ( Pt 12):2271-99. DOI: 10.1093/brain/121.12.2271. View

2.
Varela F, Lachaux J, Rodriguez E, Martinerie J . The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001; 2(4):229-39. DOI: 10.1038/35067550. View

3.
Baccala L, Sameshima K . Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001; 84(6):463-74. DOI: 10.1007/PL00007990. View

4.
Kiebel S, Garrido M, Moran R, Friston K . Dynamic causal modelling for EEG and MEG. Cogn Neurodyn. 2008; 2(2):121-36. PMC: 2427062. DOI: 10.1007/s11571-008-9038-0. View

5.
Honey C, Sporns O, Cammoun L, Gigandet X, Thiran J, Meuli R . Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. 2009; 106(6):2035-40. PMC: 2634800. DOI: 10.1073/pnas.0811168106. View