» Articles » PMID: 19003479

Dynamic Causal Modelling for EEG and MEG

Overview
Journal Cogn Neurodyn
Publisher Springer
Specialty Neurology
Date 2008 Nov 13
PMID 19003479
Citations 83
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments.

Citing Articles

Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology.

Singh M, Braver T, Cole M, Ching S Proc Natl Acad Sci U S A. 2025; 122(3):e2409577121.

PMID: 39823302 PMC: 11761305. DOI: 10.1073/pnas.2409577121.


Magnetoencephalography studies in migraine and headache disorders: A systematic review.

Gopalakrishnan R, Malan N, Mandava N, Dunn E, Nero N, Burgess R Headache. 2024; 65(2):353-366.

PMID: 39523760 PMC: 11794981. DOI: 10.1111/head.14867.


Predictive modeling of evoked intracranial EEG response to medial temporal lobe stimulation in patients with epilepsy.

Acharya G, Davis K, Nozari E Commun Biol. 2024; 7(1):1210.

PMID: 39342058 PMC: 11438964. DOI: 10.1038/s42003-024-06859-2.


Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness.

Ihalainen R, Annen J, Gosseries O, Cardone P, Panda R, Martial C PLoS One. 2024; 19(7):e0298110.

PMID: 38968195 PMC: 11226086. DOI: 10.1371/journal.pone.0298110.


Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia.

Gutlin D, McDermott H, Grundei M, Auksztulewicz R Clin EEG Neurosci. 2024; 56(1):8-21.

PMID: 38751125 PMC: 11664892. DOI: 10.1177/15500594241253910.


References
1.
Geyer M, Wilkinson L, Humby T, Robbins T . Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry. 1993; 34(6):361-72. DOI: 10.1016/0006-3223(93)90180-l. View

2.
Felleman D, Van Essen D . Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1(1):1-47. DOI: 10.1093/cercor/1.1.1-a. View

3.
Mattout J, Phillips C, Penny W, Rugg M, Friston K . MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage. 2005; 30(3):753-67. DOI: 10.1016/j.neuroimage.2005.10.037. View

4.
Picton T, Bentin S, Berg P, Donchin E, Hillyard S, Johnson Jr R . Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000; 37(2):127-52. View

5.
Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H . Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage. 2001; 13(4):669-83. DOI: 10.1006/nimg.2000.0714. View