» Articles » PMID: 23662700

Aerobic Dehydrogenation of Cyclohexanone to Cyclohexenone Catalyzed by Pd(DMSO)2(TFA)2: Evidence for Ligand-controlled Chemoselectivity

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2013 May 14
PMID 23662700
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The dehydrogenation of cyclohexanones affords cyclohexenones or phenols via removal of 1 or 2 equiv of H2, respectively. We recently reported several Pd(II) catalyst systems that effect aerobic dehydrogenation of cyclohexanones with different product selectivities. Pd(DMSO)2(TFA)2 is unique in its high chemoselectivity for the conversion of cyclohexanones to cyclohexenones, without promoting subsequent dehydrogenation of cyclohexenones to phenols. Kinetic and mechanistic studies of these reactions reveal the key role of the dimethylsulfoxide (DMSO) ligand in controlling this chemoselectivity. DMSO has minimal kinetic influence on the rate of Pd(TFA)2-catalyzed dehydrogenation of cyclohexanone to cyclohexenone, while it strongly inhibits the second dehydrogenation step, conversion of cyclohexenone to phenol. These contrasting kinetic effects of DMSO provide the basis for chemoselective formation of cyclohexenones.

Citing Articles

Tandem dehydrogenation-olefination-decarboxylation of cycloalkyl carboxylic acids via multifold C-H activation.

Pal T, Ghosh P, Islam M, Guin S, Maji S, Dutta S Nat Commun. 2024; 15(1):5370.

PMID: 38918374 PMC: 11199700. DOI: 10.1038/s41467-024-49359-x.


Tandem Reactions of Electrophilic Indoles toward Indolizines and Their Subsequent Transformations through Pd(II)-Mediated C-H Functionalization to Access Polyring-Fused -Heterocycles.

Babu S, A A, Mohan M, Paul N, Mathew J, John J ACS Omega. 2024; 9(14):16196-16206.

PMID: 38617644 PMC: 11007710. DOI: 10.1021/acsomega.3c10194.


Dehydrogenation and Transfer Hydrogenation of Alkenones to Phenols and Ketones on Carbon-Supported Noble Metals.

Li K, Kelly H, Franco A, Batista V, Barath E ACS Catal. 2024; 14(5):2883-2896.

PMID: 38449532 PMC: 10913045. DOI: 10.1021/acscatal.3c04849.


(NHC)Pd(II) hydride-catalyzed dehydroaromatization by olefin chain-walking isomerization and transfer-dehydrogenation.

Chen W, Chen Y, Gu X, Chen Z, Ho C Nat Commun. 2022; 13(1):5507.

PMID: 36127352 PMC: 9489721. DOI: 10.1038/s41467-022-33163-6.


Selective desaturation of amides: a direct approach to enamides.

Li X, Cheng Z, Liu J, Zhang Z, Song S, Jiao N Chem Sci. 2022; 13(31):9056-9061.

PMID: 36091215 PMC: 9365091. DOI: 10.1039/d2sc02210a.


References
1.
Crabtree R . Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev. 2011; 112(3):1536-54. DOI: 10.1021/cr2002905. View

2.
Simon M, Girard S, Li C . Catalytic aerobic synthesis of aromatic ethers from non-aromatic precursors. Angew Chem Int Ed Engl. 2012; 51(30):7537-40. DOI: 10.1002/anie.201200698. View

3.
Balcells D, Clot E, Eisenstein O . C-H bond activation in transition metal species from a computational perspective. Chem Rev. 2010; 110(2):749-823. DOI: 10.1021/cr900315k. View

4.
Decharin N, Popp B, Stahl S . Reaction of O2 with [(-)-sparteine]Pd(H)Cl: evidence for an intramolecular [H-L]+ "reductive elimination" pathway. J Am Chem Soc. 2011; 133(34):13268-71. PMC: 3161160. DOI: 10.1021/ja204989p. View

5.
Diao T, White P, Guzei I, Stahl S . Characterization of DMSO coordination to palladium(II) in solution and insights into the aerobic oxidation catalyst, Pd(DMSO)2(TFA)2. Inorg Chem. 2012; 51(21):11898-909. PMC: 3494491. DOI: 10.1021/ic301799p. View