Importance:
Using more intervals to detect ventricular tachyarrhythmias has been associated with reducing unnecessary implantable cardioverter-defibrillator (ICD) therapies.
Objective:
To determine whether using 30 of 40 intervals to detect ventricular arrhythmias (VT) (long detection) during spontaneous fast VT episodes reduces antitachycardia pacing (ATP) and shock delivery more than 18 of 24 intervals (standard detection).
Design, Setting, And Participants:
Randomized, single-blind, parallel-group trial that enrolled 1902 primary and secondary prevention patients (mean [SD] age, 65 [11] years; 84% men; 75% primary prevention ICD) with ischemic and nonischemic etiology undergoing first ICD implant at 1 of 94 international centers (March 2008-December 2010).
Interventions:
Patients were randomized 1:1 to programming with long- (n = 948) or standard-detection (n = 954) intervals.
Main Outcomes And Measures:
Total number of ATPs and shocks delivered for all episodes (primary outcomes) and inappropriate shocks, mortality, and syncopal rate (secondary outcomes).
Results:
During a median follow-up of 12 months (interquartile range, 11-13), long-detection group had 346 delivered therapies (42 therapies per 100 person-years, 95% CI, 38-47) vs 557 in the standard-detection group (67 therapies per 100 person-years [95% CI, 62-73]; incident rate ratio [IRR], 0.63 [95% CI, 0.51-0.78]; P < .001). The long- vs the standard-detection group experienced 23 ATPs per 100 person-years (95% CI, 20-27) vs 37 ATPs per 100 person-years (95% CI, 33-41; IRR, 0.58 [95% CI, 0.47-0.72]; P < .001); 19 shocks per 100 person-years (95% CI, 16-22) vs 30 shocks per 100 person-years (95% CI, 26-34; IRR, 0.77 [95% CI, 0.59-1.01]; P = .06), with a significant difference in the probability of therapy occurrence (P < .001); and a reduction in first occurrence of inappropriate shock (5.1 per 100 patient-years [95% CI, 3.7-6.9] vs 11.6 [95% CI, 9.4-14.1]; IRR, 0.55 [95% CI, 0.36-0.85]; P = .008). Mortality (5.5 [95% CI, 4.0-7.2] vs 6.3 [95% CI, 4.8-8.2] per 100 patient-years; HR, 0.87; P = .50) and arrhythmic syncope rates (3.1 [95% CI, 2.6-4.6] vs 1.9 [95% CI, 1.1-3.1] per 100 patient-years; IRR, 1.60 [95% CI, 0.76-3.41]; P = .22) did not differ significantly between groups.
Conclusions And Relevance:
Among patients receiving an ICD, the use of a long- vs standard-detection interval resulted in a lower rate of ATP and shocks, and inappropriate shocks. This programming strategy may be an appropriate alternative.
Trial Registration:
clinicaltrials.gov Identifier: NCT00617175.
Citing Articles
The Role of Subcutaneous ICDs in the Prevention of Sudden Cardiac Death.
John L, Karimianpour A, Gold M
US Cardiol. 2024; 15:e19.
PMID: 39720500
PMC: 11664769.
DOI: 10.15420/usc.2021.01.
Clinical Decision Making and Technical Approaches in Implantable Cardioverter-Defibrillator Procedures: A Step by Step Critical Appraisal of Literature.
Roseboom E, Smit M, Groenveld H, Rienstra M, Maass A
Rev Cardiovasc Med. 2024; 25(11):403.
PMID: 39618862
PMC: 11607494.
DOI: 10.31083/j.rcm2511403.
Optimal Timing of Cardioverter-Defibrillator Implantation in Patients with Left Ventricular Dysfunction after Acute Myocardial Infarction.
Ursaru A, Costache I, Petris A, Haba M, Mitu O, Crisan A
Rev Cardiovasc Med. 2024; 23(4):124.
PMID: 39076214
PMC: 11273764.
DOI: 10.31083/j.rcm2304124.
Effects of Irradiation During Computed Tomography Scanning on the Function of Implantable Cardioverter-defibrillators.
Nishikawa Y, Fujimoto N, Kurata T, Sasou T, Yamazaki A, Ichikawa Y
J Innov Card Rhythm Manag. 2024; 15(7):5936-5944.
PMID: 39011460
PMC: 11238888.
DOI: 10.19102/icrm.2024.15073.
Implantable Cardioverter Defibrillator Tachycardia Therapies: Past, Present and Future Directions.
Leong A, Arnold A, Whinnett Z
J Cardiovasc Dev Dis. 2024; 11(3).
PMID: 38535115
PMC: 10970811.
DOI: 10.3390/jcdd11030092.
Machine learning-derived cycle length variability metrics predict spontaneously terminating ventricular tachycardia in implantable cardioverter defibrillator recipients.
Sau A, Ahmed A, Chen J, Pastika L, Wright I, Li X
Eur Heart J Digit Health. 2024; 5(1):50-59.
PMID: 38264702
PMC: 10802825.
DOI: 10.1093/ehjdh/ztad064.
Real-world use of a novel ventricular tachyarrhythmia detection algorithm: A case report.
Brignoli M, Mattera A, Chianese R, Simonetti A, Vittoria D, Viscusi M
HeartRhythm Case Rep. 2024; 9(12):929-934.
PMID: 38204833
PMC: 10774585.
DOI: 10.1016/j.hrcr.2023.10.002.
Single- Versus Dual-Chamber Implantable Cardioverter-Defibrillator for Primary Prevention of Sudden Cardiac Death in the United States.
Margolis G, Hamuda N, Kobo O, Greener G, Amir O, Homoud M
J Am Heart Assoc. 2023; 12(15):e029126.
PMID: 37522389
PMC: 10492963.
DOI: 10.1161/JAHA.122.029126.
Implantable Cardioverter-Defibrillator for Primary Prevention in Asia.
Younis A, Wilkoff B
JACC Asia. 2023; 3(3):321-334.
PMID: 37323870
PMC: 10261897.
DOI: 10.1016/j.jacasi.2022.11.014.
Relationship between Exercise Test Parameters, Device-Delivered Electric Shock and Adverse Clinical Events in Patients with an Implantable Cardioverter Defibrillator for Primary Prevention.
Thery G, Faroux L, Boyer F, Nazeyrollas P, Chabert J, Metz D
J Pers Med. 2023; 13(4).
PMID: 37108975
PMC: 10143101.
DOI: 10.3390/jpm13040589.
European Society of Cardiology quality indicators for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death.
Aktaa S, Tzeis S, Gale C, Ackerman M, Arbelo E, Behr E
Europace. 2023; 25(1):199-210.
PMID: 36753478
PMC: 10103575.
DOI: 10.1093/europace/euac114.
Ventricular arrhythmia detection for contemporary Biotronik and Abbott implantable cardioverter defibrillators with markedly prolonged detection in Biotronik devices.
Oesterle A, Dhruva S, Pellegrini C, Liem B, Raitt M
J Interv Card Electrophysiol. 2023; 66(7):1679-1691.
PMID: 36737506
DOI: 10.1007/s10840-023-01498-9.
Syncope in ICD recipients: a single centre experience.
Khan P, Selvarajah K, Gohel S, Sidhu B, Cannata A, Bromage D
Europace. 2023; 25(3):940-947.
PMID: 36638366
PMC: 10062314.
DOI: 10.1093/europace/euac281.
Programming of implantable cardioverter defibrillators for primary prevention: outcomes at centers with high vs. low concordance with guidelines.
Teerawongsakul P, Ananwattanasuk T, Chokesuwattanaskul R, Shah M, Lathkar-Pradhan S, Barham W
J Interv Card Electrophysiol. 2022; 66(6):1359-1366.
PMID: 36422768
DOI: 10.1007/s10840-022-01431-6.
Inappropriate defibrillator shock due to fragmented potentials derived from an extensively diseased right ventricle in a patient with arrhythmogenic right ventricular cardiomyopathy.
Goto K, Miyazaki S, Handa K, Kobayashi K, Goya M, Sasano T
HeartRhythm Case Rep. 2022; 8(10):666-670.
PMID: 36310728
PMC: 9596353.
DOI: 10.1016/j.hrcr.2022.07.009.
Cost-Effectiveness of Cardioverter-Defibrillator Implantation in Kazakhstan.
Begisbayev T, Kosherbayeva L, Gaitova K, Brimzhanova M
Vasc Health Risk Manag. 2022; 18:813-821.
PMID: 36281286
PMC: 9587701.
DOI: 10.2147/VHRM.S369953.
Outcomes Following Standardized Implantable Cardioverter-defibrillator Reprogramming.
Martini M, Kalscheur M, Dehn E, McSherry T, Leal M, Broman A
J Innov Card Rhythm Manag. 2022; 13(4):4941-4945.
PMID: 35474860
PMC: 9023023.
DOI: 10.19102/icrm.2022.130403.
Novel ventricular tachyarrhythmia detection enhancement detects undertreated life-threatening arrhythmias.
Wilkoff B, Sterns L, Katcher M, Upadhyay G, Seizer P, Kang C
Heart Rhythm O2. 2022; 3(1):70-78.
PMID: 35243438
PMC: 8859789.
DOI: 10.1016/j.hroo.2021.11.009.
An updated systematic review on heart failure treatments for patients with renal impairment: the tide is not turning.
Hey C, Barra S, Duehmke R, Pettit S, Levy W, Silva-Cardoso J
Heart Fail Rev. 2022; 27(5):1761-1777.
PMID: 35129754
DOI: 10.1007/s10741-022-10216-y.
Comparable Efficacy in Ischemic and Non-Ischemic ICD Recipients for the Primary Prevention of Sudden Cardiac Death.
Ursaru A, Petris A, Costache I, Tesloianu N
Biomedicines. 2021; 9(11).
PMID: 34829824
PMC: 8615246.
DOI: 10.3390/biomedicines9111595.