Song Y, Choi J, Park J, Kwon Y, Hong K, Lee J
Nutrients. 2024; 16(23).
PMID: 39683541
PMC: 11644644.
DOI: 10.3390/nu16234147.
Schjerven F, Lindseth F, Steinsland I
PLoS One. 2024; 19(3):e0294148.
PMID: 38466745
PMC: 10927109.
DOI: 10.1371/journal.pone.0294148.
Shaver N, Beck A, Bennett A, Wilson B, Garritty C, Subnath M
Syst Rev. 2024; 13(1):17.
PMID: 38183086
PMC: 10768239.
DOI: 10.1186/s13643-023-02392-1.
Bu S
Front Nutr. 2023; 10:1254109.
PMID: 38075232
PMC: 10701676.
DOI: 10.3389/fnut.2023.1254109.
Asowata O, Okekunle A, Akpa O, Fakunle A, Akinyemi J, Komolafe M
Hypertension. 2023; 80(12):2581-2590.
PMID: 37830199
PMC: 10715722.
DOI: 10.1161/HYPERTENSIONAHA.122.20572.
Development and validation of a model to predict the risk of hypertension using anthropometric indicators in the Chinese population: a retrospective cohort study.
Wang L, Wang Y, Han T, Li Y, Zhang T, Ma W
Am J Transl Res. 2023; 15(3):2207-2219.
PMID: 37056806
PMC: 10086925.
A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population.
Chowdhury M, Leung A, Walker R, Sikdar K, OBeirne M, Quan H
Sci Rep. 2023; 13(1):13.
PMID: 36593280
PMC: 9807553.
DOI: 10.1038/s41598-022-27264-x.
Development and validation of a hypertension risk prediction model and construction of a risk score in a Canadian population.
Chowdhury M, Leung A, Sikdar K, OBeirne M, Quan H, Turin T
Sci Rep. 2022; 12(1):12780.
PMID: 35896590
PMC: 9329335.
DOI: 10.1038/s41598-022-16904-x.
Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis.
Chowdhury M, Naeem I, Quan H, Leung A, Sikdar K, OBeirne M
PLoS One. 2022; 17(4):e0266334.
PMID: 35390039
PMC: 8989291.
DOI: 10.1371/journal.pone.0266334.
Development and Validation of a Risk Score Screening Tool to Identify People at Risk for Hypertension in Shanghai, China.
Jiang Q, Gong D, Li H, Zhang D, Hu S, Xia Q
Risk Manag Healthc Policy. 2022; 15:553-562.
PMID: 35386277
PMC: 8977866.
DOI: 10.2147/RMHP.S354057.
Development of the Hypertension Index Model in General Adult Using the Korea National Health and Nutritional Examination Survey and the Korean Genome and Epidemiology Study.
Seo M, Ahn S, Lee Y, Kim J
J Pers Med. 2021; 11(10).
PMID: 34683109
PMC: 8540826.
DOI: 10.3390/jpm11100968.
A hypertension risk score for adults: a population-based cross-sectional study from the Dubai Household Survey 2019.
Mahmoud I, Sulaiman N, Hussein A, Mamdouh H, Al Nakhi W, Hussain H
Epidemiol Health. 2021; 43:e2021064.
PMID: 34525498
PMC: 8769801.
DOI: 10.4178/epih.e2021064.
Development and validation of a nomogram to better predict hypertension based on a 10-year retrospective cohort study in China.
Deng X, Hou H, Wang X, Li Q, Li X, Yang Z
Elife. 2021; 10.
PMID: 34047697
PMC: 8163499.
DOI: 10.7554/eLife.66419.
Validation of the Framingham hypertension risk score in a middle eastern population: Tehran lipid and glucose study (TLGS).
Koohi F, Steyerberg E, Cheraghi L, Abdshah A, Azizi F, Khalili D
BMC Public Health. 2021; 21(1):790.
PMID: 33894756
PMC: 8070324.
DOI: 10.1186/s12889-021-10760-6.
Analyzing Trio-Anthropometric Predictors of Hypertension: Determining the Susceptibility of Blood Pressure to Sexual Dimorphism in Body Stature.
Kenneth E, Chinedu U, Christian A, Ezeonu P, Obaje S
Int J Hypertens. 2021; 2021:5129302.
PMID: 33532094
PMC: 7837789.
DOI: 10.1155/2021/5129302.
A simple nomogram score for screening patients with type 2 diabetes to detect those with hypertension: A cross-sectional study based on a large community survey in China.
Xue M, Liu L, Wang S, Su Y, Lv K, Zhang M
PLoS One. 2020; 15(8):e0236957.
PMID: 32764769
PMC: 7413482.
DOI: 10.1371/journal.pone.0236957.
Development and validation of prediction models for hypertension risks in rural Chinese populations.
Xu F, Zhu J, Sun N, Wang L, Xie C, Tang Q
J Glob Health. 2019; 9(2):020601.
PMID: 31788232
PMC: 6875679.
DOI: 10.7189/jogh.09.020601.
A risk score predicting new incidence of hypertension in Japan.
Kadomatsu Y, Tsukamoto M, Sasakabe T, Kawai S, Naito M, Kubo Y
J Hum Hypertens. 2019; 33(10):748-755.
PMID: 31431683
DOI: 10.1038/s41371-019-0226-7.
A Prediction Model of Essential Hypertension Based on Genetic and Environmental Risk Factors in Northern Han Chinese.
Li C, Sun D, Liu J, Li M, Zhang B, Liu Y
Int J Med Sci. 2019; 16(6):793-799.
PMID: 31337952
PMC: 6643104.
DOI: 10.7150/ijms.33967.
Association of exposure level to passive smoking with hypertension among lifetime nonsmokers in Japan: a cross-sectional study.
Tamura T, Kadomatsu Y, Tsukamoto M, Okada R, Sasakabe T, Kawai S
Medicine (Baltimore). 2018; 97(48):e13241.
PMID: 30508907
PMC: 6283225.
DOI: 10.1097/MD.0000000000013241.