» Articles » PMID: 23594878

Genomics and Genetics of Sulfolobus Islandicus LAL14/1, a Model Hyperthermophilic Archaeon

Overview
Journal Open Biol
Date 2013 Apr 19
PMID 23594878
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin-antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus-host interactions and the CRISPR/Cas defence mechanism in Archaea.

Citing Articles

Functional Roles and Genomic Impact of Miniature Inverted-Repeat Transposable Elements (MITEs) in Prokaryotes.

Minnick M Genes (Basel). 2024; 15(3).

PMID: 38540387 PMC: 10969869. DOI: 10.3390/genes15030328.


Cbp1 and Cren7 form chromatin-like structures that ensure efficient transcription of long CRISPR arrays.

Blombach F, Sykora M, Case J, Feng X, Baquero D, Fouqueau T Nat Commun. 2024; 15(1):1620.

PMID: 38388540 PMC: 10883916. DOI: 10.1038/s41467-024-45728-8.


High-MOI induces rapid CRISPR spacer acquisition in from an deficient virus.

Bhoobalan-Chitty Y, Duan X, Peng X MicroPubl Biol. 2022; 2022.

PMID: 36439395 PMC: 9682418. DOI: 10.17912/micropub.biology.000664.


Genome editing in archaeal viruses and endogenous viral protein purification.

Alfastsen L, Peng X, Bhoobalan-Chitty Y STAR Protoc. 2021; 2(4):100791.

PMID: 34585154 PMC: 8456065. DOI: 10.1016/j.xpro.2021.100791.


A filamentous archaeal virus is enveloped inside the cell and released through pyramidal portals.

Baquero D, Gazi A, Sachse M, Liu J, Schmitt C, Moya-Nilges M Proc Natl Acad Sci U S A. 2021; 118(32).

PMID: 34341107 PMC: 8364153. DOI: 10.1073/pnas.2105540118.


References
1.
Horvath P, Barrangou R . CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962):167-70. DOI: 10.1126/science.1179555. View

2.
Robinson N, Bell S . Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci U S A. 2007; 104(14):5806-11. PMC: 1851573. DOI: 10.1073/pnas.0700206104. View

3.
Zhang C, Zhang R, Ou H . The Z curve database: a graphic representation of genome sequences. Bioinformatics. 2003; 19(5):593-9. DOI: 10.1093/bioinformatics/btg041. View

4.
Guo L, Brugger K, Liu C, Shah S, Zheng H, Zhu Y . Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol. 2011; 193(7):1672-80. PMC: 3067641. DOI: 10.1128/JB.01487-10. View

5.
Robinson N, Dionne I, Lundgren M, Marsh V, Bernander R, Bell S . Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell. 2004; 116(1):25-38. DOI: 10.1016/s0092-8674(03)01034-1. View