» Articles » PMID: 23593293

Klebsiella Phage VB_KleM-RaK2 - a Giant Singleton Virus of the Family Myoviridae

Overview
Journal PLoS One
Date 2013 Apr 18
PMID 23593293
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.

Citing Articles

Novel bacteriophages targeting wheat phyllosphere bacteria carry DNA modifications and single-strand breaks.

Dougherty P, Pedersen M, Forero-Junco L, Carstens A, Raaijmakers J, Riber L Virus Res. 2025; 352:199524.

PMID: 39742975 PMC: 11780129. DOI: 10.1016/j.virusres.2024.199524.


Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination.

Juszczuk-Kubiak E Int J Mol Sci. 2024; 25(5).

PMID: 38473900 PMC: 10931677. DOI: 10.3390/ijms25052655.


Characterization of Bacteriophage vB_PtoS_NIIg3.2-A Representative of a New Genus within Thermophilic Siphoviruses.

Simoliunas E, Simoliuniene M, Laskeviciute G, Kvederaviciute K, Skapas M, Kaupinis A Int J Mol Sci. 2023; 24(18).

PMID: 37762288 PMC: 10530707. DOI: 10.3390/ijms241813980.


Exploring the enzymatic activity of depolymerase gp531 from Klebsiella pneumoniae jumbo phage RaK2.

Noreika A, Stankeviciute J, Rutkiene R, Meskys R, Kaliniene L Virus Res. 2023; 336:199225.

PMID: 37741345 PMC: 10550766. DOI: 10.1016/j.virusres.2023.199225.


Bacteriophages from Compost Heaps: Representatives of Three New Genera within Thermophilic Siphoviruses.

Simoliunas E, Simoliuniene M, Laskeviciute G, Kvederaviciute K, Skapas M, Kaupinis A Viruses. 2023; 15(8).

PMID: 37632033 PMC: 10459684. DOI: 10.3390/v15081691.


References
1.
Christian N, Roye-Green K, Smikle M . Molecular epidemiology of multidrug resistant extended spectrum beta-lactamase producing Klebsiella pneumoniae at a Jamaican hospital, 2000-2004. BMC Microbiol. 2010; 10:27. PMC: 2824695. DOI: 10.1186/1471-2180-10-27. View

2.
Kumari S, Harjai K, Chhibber S . Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol. 2010; 20(5):935-41. DOI: 10.4014/jmb.0909.09010. View

3.
Nordmann P, Cuzon G, Naas T . The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9(4):228-36. DOI: 10.1016/S1473-3099(09)70054-4. View

4.
Mesyanzhinov V, Robben J, Grymonprez B, Kostyuchenko V, Bourkaltseva M, Sykilinda N . The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol. 2002; 317(1):1-19. DOI: 10.1006/jmbi.2001.5396. View

5.
Bailey T, Elkan C . Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994; 2:28-36. View