» Articles » PMID: 23592150

Microfluidic LC Device with Orthogonal Sample Extraction for On-chip MALDI-MS Detection

Overview
Journal Lab Chip
Specialties Biotechnology
Chemistry
Date 2013 Apr 18
PMID 23592150
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel.

Citing Articles

Chip-based ion chromatography (chip-IC) with a sensitive five-electrode conductivity detector for the simultaneous detection of multiple ions in drinking water.

Li X, Chang H Microsyst Nanoeng. 2021; 6:66.

PMID: 34567677 PMC: 8433475. DOI: 10.1038/s41378-020-0175-x.


[Recent advances in microchip liquid chromatography].

Wen H, Zhu J, Zhang B Se Pu. 2021; 39(4):357-367.

PMID: 34227755 PMC: 9404124. DOI: 10.3724/SP.J.1123.2020.07031.


Microfluidic reactors for advancing the MS analysis of fast biological responses.

Lazar I, Deng J, Stremler M, Ahuja S Microsyst Nanoeng. 2019; 5:7.

PMID: 31057934 PMC: 6369226. DOI: 10.1038/s41378-019-0048-3.


Achieving Stable Electrospray Ionization Mass Spectrometry Detection from Microfluidic Chips.

Lazar I Methods Mol Biol. 2018; 1906:225-237.

PMID: 30488396 PMC: 7384444. DOI: 10.1007/978-1-4939-8964-5_15.


Advances in and prospects of microchip liquid chromatography.

Grinias J, Kennedy R Trends Analyt Chem. 2016; 81:110-117.

PMID: 27418710 PMC: 4939432. DOI: 10.1016/j.trac.2015.08.002.


References
1.
Shih S, Yang H, Jebrail M, Fobel R, McIntosh N, Y Al-Dirbashi O . Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem. 2012; 84(8):3731-8. DOI: 10.1021/ac300305s. View

2.
Broeckhoven K, Cabooter D, Eeltink S, Desmet G . Kinetic plot based comparison of the efficiency and peak capacity of high-performance liquid chromatography columns: theoretical background and selected examples. J Chromatogr A. 2011; 1228:20-30. DOI: 10.1016/j.chroma.2011.08.003. View

3.
Chatterjee D, Ytterberg A, Son S, Loo J, Garrell R . Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis. Anal Chem. 2010; 82(5):2095-101. DOI: 10.1021/ac9029373. View

4.
Baker C, Duong C, Grimley A, Roper M . Recent advances in microfluidic detection systems. Bioanalysis. 2010; 1(5):967-75. PMC: 2856342. DOI: 10.4155/bio.09.86. View

5.
Galicia M, Vertes A, Callahan J . Atmospheric pressure matrix-assisted laser desorption/ionization in transmission geometry. Anal Chem. 2002; 74(8):1891-5. DOI: 10.1021/ac011098i. View