» Articles » PMID: 23540690

Influence of Metabolism on Epigenetics and Disease

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2013 Apr 2
PMID 23540690
Citations 444
Authors
Affiliations
Soon will be listed here.
Abstract

Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells.

Citing Articles

Metaboloepigenetics: Role in the Regulation of Flow-Mediated Endothelial (Dys)Function and Atherosclerosis.

Santos F, Sum H, Yan D, Brewer A Cells. 2025; 14(5).

PMID: 40072106 PMC: 11898952. DOI: 10.3390/cells14050378.


The metabolic adaptation in wild vertebrates via omics approaches.

Du X, Hu Y, Huang G, Wei F Life Metab. 2025; 1(3):234-241.

PMID: 39872075 PMC: 11749369. DOI: 10.1093/lifemeta/loac040.


Fuel for thought: targeting metabolism in lung cancer.

Schneider J, Han S, Nabel C Transl Lung Cancer Res. 2025; 13(12):3692-3717.

PMID: 39830762 PMC: 11736591. DOI: 10.21037/tlcr-24-662.


Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Sahu V, Lu C Mol Cell. 2025; 85(2):262-275.

PMID: 39824167 PMC: 11750176. DOI: 10.1016/j.molcel.2024.12.012.


Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression.

Nshanian M, Gruber J, Geller B, Chleilat F, Lancaster S, White S Nat Metab. 2025; 7(1):196-211.

PMID: 39789354 PMC: 11774759. DOI: 10.1038/s42255-024-01191-9.


References
1.
Selak M, Armour S, MacKenzie E, Boulahbel H, Watson D, Mansfield K . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005; 7(1):77-85. DOI: 10.1016/j.ccr.2004.11.022. View

2.
Cervera A, Bayley J, Devilee P, McCreath K . Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer. 2009; 8:89. PMC: 2770992. DOI: 10.1186/1476-4598-8-89. View

3.
Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M . Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009; 114(1):144-7. PMC: 2710942. DOI: 10.1182/blood-2009-03-210039. View

4.
Teperino R, Schoonjans K, Auwerx J . Histone methyl transferases and demethylases; can they link metabolism and transcription?. Cell Metab. 2010; 12(4):321-327. PMC: 3642811. DOI: 10.1016/j.cmet.2010.09.004. View

5.
Starai V, Celic I, Cole R, Boeke J, Escalante-Semerena J . Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002; 298(5602):2390-2. DOI: 10.1126/science.1077650. View