» Articles » PMID: 23531393

Alignment of New Tuberculosis Drug Regimens and Drug Susceptibility Testing: a Framework for Action

Abstract

New tuberculosis drug regimens are creating new priorities for drug susceptibility testing (DST) and surveillance. To minimise turnaround time, rapid DST will need to be prioritised, but developers of these assays will need better data about the molecular mechanisms of resistance. Efforts are underway to link mutations with drug resistance and to develop strain collections to enable assessment of new diagnostic assays. In resource-limited settings, DST might not be appropriate for all patients with tuberculosis. Surveillance data and modelling will help country stakeholders to design appropriate DST algorithms and to decide whether to change drug regimens. Finally, development of practical DST assays is needed so that, in countries where surveillance and modelling show that DST is advisable, these assays can be used to guide clinical decisions for individual patients. If combined judiciously during both development and implementation, new tuberculosis regimens and new DST assays have enormous potential to improve patient outcomes and reduce the burden of disease.

Citing Articles

Rapid detection of multidrug resistance in tuberculosis using nanopore-based targeted next-generation sequencing: a multicenter, double-blind study.

Liu A, Liu S, Lv K, Zhu Q, Wen J, Li J Front Microbiol. 2024; 15:1349715.

PMID: 38495513 PMC: 10940340. DOI: 10.3389/fmicb.2024.1349715.


Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study.

Finci I, Albertini A, Merker M, Andres S, Bablishvili N, Barilar I Lancet Microbe. 2022; 3(9):e672-e682.

PMID: 35907429 PMC: 9436784. DOI: 10.1016/S2666-5247(22)00116-1.


Use of Whole-Genome Sequencing to Predict Complex Drug Resistance from Early Positive Liquid Cultures.

Wu X, Tan G, Sha W, Liu H, Yang J, Guo Y Microbiol Spectr. 2022; 10(2):e0251621.

PMID: 35311541 PMC: 9045259. DOI: 10.1128/spectrum.02516-21.


A Rapid Assessing Method of Drug Susceptibility Using Flow Cytometry for Mycobacterium tuberculosis Isolates Resistant to Isoniazid, Rifampin, and Ethambutol.

Lee S, Baek S, Hong M, Lee J, Cho E, Lee J Tuberc Respir Dis (Seoul). 2022; 85(3):264-272.

PMID: 35196443 PMC: 9263347. DOI: 10.4046/trd.2021.0134.


Distinguishing Relapse From Reinfection With Whole-Genome Sequencing in Recurrent Pulmonary Tuberculosis: A Retrospective Cohort Study in Beijing, China.

Du J, Li Q, Liu M, Wang Y, Xue Z, Huo F Front Microbiol. 2021; 12:754352.

PMID: 34956119 PMC: 8693897. DOI: 10.3389/fmicb.2021.754352.


References
1.
Diacon A, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald P . 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012; 380(9846):986-93. DOI: 10.1016/S0140-6736(12)61080-0. View

2.
Walker T, Ip C, Harrell R, Evans J, Kapatai G, Dedicoat M . Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2012; 13(2):137-46. PMC: 3556524. DOI: 10.1016/S1473-3099(12)70277-3. View

3.
Huang T, Kunin C, Shin-Jung Lee S, Chen Y, Tu H, Liu Y . Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother. 2005; 56(6):1058-62. DOI: 10.1093/jac/dki353. View

4.
Zhao Y, Xu S, Wang L, Chin D, Wang S, Jiang G . National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012; 366(23):2161-70. DOI: 10.1056/NEJMoa1108789. View

5.
Jureen P, Werngren J, Toro J, Hoffner S . Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008; 52(5):1852-4. PMC: 2346646. DOI: 10.1128/AAC.00110-08. View