» Articles » PMID: 23493069

Microfluidic Trap Array for Massively Parallel Imaging of Drosophila Embryos

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2013 Mar 16
PMID 23493069
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Here we describe a protocol for the fabrication and use of a microfluidic device to rapidly orient >700 Drosophila embryos in parallel for end-on imaging. The protocol describes master microfabrication (∼1 d), polydimethylsiloxane molding (few hours), system setup and device operation (few minutes) and imaging (depending on application). Our microfluidics-based approach described here is one of the first to facilitate rapid orientation for end-on imaging, and it is a major breakthrough for quantitative studies on Drosophila embryogenesis. The operating principle of the embryo trap is based on passive hydrodynamics, and it does not require direct manipulation of embryos by the user; biologists following the protocol should be able to repeat these procedures. The compact design and fabrication materials used allow the device to be used with traditional microscopy setups and do not require specialized fixtures. Furthermore, with slight modification, this array can be applied to the handling of other model organisms and oblong objects.

Citing Articles

Cell pairing for biological analysis in microfluidic devices.

Tang X, Huang Q, Arai T, Liu X Biomicrofluidics. 2022; 16(6):061501.

PMID: 36389274 PMC: 9646252. DOI: 10.1063/5.0095828.


A robot-assisted acoustofluidic end effector.

Durrer J, Agrawal P, Ozgul A, Neuhauss S, Nama N, Ahmed D Nat Commun. 2022; 13(1):6370.

PMID: 36289227 PMC: 9605990. DOI: 10.1038/s41467-022-34167-y.


Microfluidics for understanding model organisms.

Frey N, Sonmez U, Minden J, LeDuc P Nat Commun. 2022; 13(1):3195.

PMID: 35680898 PMC: 9184607. DOI: 10.1038/s41467-022-30814-6.


An open-source semi-automated robotics pipeline for embryo immunohistochemistry.

Fuqua T, Jordan J, Halavatyi A, Tischer C, Richter K, Crocker J Sci Rep. 2021; 11(1):10314.

PMID: 33986394 PMC: 8119710. DOI: 10.1038/s41598-021-89676-5.


A polymer index-matched to water enables diverse applications in fluorescence microscopy.

Han X, Su Y, White H, ONeill K, Morgan N, Christensen R Lab Chip. 2021; 21(8):1549-1562.

PMID: 33629685 PMC: 8058278. DOI: 10.1039/d0lc01233e.


References
1.
Kim Y, Andreu M, Lim B, Chung K, Terayama M, Jimenez G . Gene regulation by MAPK substrate competition. Dev Cell. 2011; 20(6):880-7. PMC: 3580161. DOI: 10.1016/j.devcel.2011.05.009. View

2.
Reeves G, Trisnadi N, Truong T, Nahmad M, Katz S, Stathopoulos A . Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev Cell. 2012; 22(3):544-57. PMC: 3469262. DOI: 10.1016/j.devcel.2011.12.007. View

3.
Samara C, Rohde C, Gilleland C, Norton S, Haggarty S, Yanik M . Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc Natl Acad Sci U S A. 2010; 107(43):18342-7. PMC: 2972960. DOI: 10.1073/pnas.1005372107. View

4.
Kanodia J, Rikhy R, Kim Y, Lund V, Delotto R, Lippincott-Schwartz J . Dynamics of the Dorsal morphogen gradient. Proc Natl Acad Sci U S A. 2009; 106(51):21707-12. PMC: 2799810. DOI: 10.1073/pnas.0912395106. View

5.
Witzberger M, Fitzpatrick J, Crowley J, Minden J . End-on imaging: a new perspective on dorsoventral development in Drosophila embryos. Dev Dyn. 2008; 237(11):3252-9. PMC: 2881697. DOI: 10.1002/dvdy.21752. View