» Articles » PMID: 23415570

Controversies and Priorities in Amyotrophic Lateral Sclerosis

Abstract

Two decades after the discovery that 20% of familial amyotrophic lateral sclerosis (ALS) cases were linked to mutations in the superoxide dismutase-1 (SOD1) gene, a substantial proportion of the remainder of cases of familial ALS have now been traced to an expansion of the intronic hexanucleotide repeat sequence in C9orf72. This breakthrough provides an opportunity to re-evaluate longstanding concepts regarding the cause and natural history of ALS, coming soon after the pathological unification of ALS with frontotemporal dementia through a shared pathological signature of cytoplasmic inclusions of the ubiquitinated protein TDP-43. However, with profound clinical, prognostic, neuropathological, and now genetic heterogeneity, the concept of ALS as one disease appears increasingly untenable. This background calls for the development of a more sophisticated taxonomy, and an appreciation of ALS as the breakdown of a wider network rather than a discrete vulnerable population of specialised motor neurons. Identification of C9orf72 repeat expansions in patients without a family history of ALS challenges the traditional division between familial and sporadic disease. By contrast, the 90% of apparently sporadic cases and incomplete penetrance of several genes linked to familial cases suggest that at least some forms of ALS arise from the interplay of multiple genes, poorly understood developmental, environmental, and age-related factors, as well as stochastic events.

Citing Articles

Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases.

Li Y, Fu J, Wang H Pharmaceuticals (Basel). 2024; 17(11).

PMID: 39598374 PMC: 11597607. DOI: 10.3390/ph17111462.


Gut microbiota immune cross-talk in amyotrophic lateral sclerosis.

Kaul M, Mukherjee D, Weiner H, Cox L Neurotherapeutics. 2024; 21(6):e00469.

PMID: 39510899 PMC: 11585889. DOI: 10.1016/j.neurot.2024.e00469.


Overview of nomenclature and diagnosis of amyotrophic lateral sclerosis.

Xu R Ann Med. 2024; 56(1):2422572.

PMID: 39470153 PMC: 11523246. DOI: 10.1080/07853890.2024.2422572.


Assessment of Rab geranylgeranyltransferase subunit beta in amyotrophic lateral sclerosis.

Yang J, Tian M, Zhang L, Xin C, Huo J, Liu Q Front Neurol. 2024; 15:1447461.

PMID: 39224887 PMC: 11366579. DOI: 10.3389/fneur.2024.1447461.


Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration.

Arnold F, Putka A, Raychaudhuri U, Hsu S, Bedlack R, Bennett C Int J Mol Sci. 2024; 25(11).

PMID: 38891774 PMC: 11171854. DOI: 10.3390/ijms25115587.


References
1.
Cheah B, Vucic S, Krishnan A, Boland R, Kiernan M . Neurophysiological index as a biomarker for ALS progression: validity of mixed effects models. Amyotroph Lateral Scler. 2011; 12(1):33-8. DOI: 10.3109/17482968.2010.531742. View

2.
Renton A, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs J . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72(2):257-68. PMC: 3200438. DOI: 10.1016/j.neuron.2011.09.010. View

3.
Douaud G, Filippini N, Knight S, Talbot K, Turner M . Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain. 2011; 134(Pt 12):3470-9. DOI: 10.1093/brain/awr279. View

4.
Deng H, Chen W, Hong S, Boycott K, Gorrie G, Siddique N . Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011; 477(7363):211-5. PMC: 3169705. DOI: 10.1038/nature10353. View

5.
Ludolph A, Bendotti C, Blaugrund E, Hengerer B, Loffler J, Martin J . Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotroph Lateral Scler. 2007; 8(4):217-23. DOI: 10.1080/17482960701292837. View