» Articles » PMID: 23395391

Peripheral Nerve-derived CXCL12 and VEGF-A Regulate the Patterning of Arterial Vessel Branching in Developing Limb Skin

Overview
Journal Dev Cell
Publisher Cell Press
Date 2013 Feb 12
PMID 23395391
Citations 76
Authors
Affiliations
Soon will be listed here.
Abstract

In developing limb skin, peripheral nerves provide a spatial template that controls the branching pattern and differentiation of arteries. Our previous studies indicate that nerve-derived VEGF-A is required for arterial differentiation but not for nerve-vessel alignment. In this study, we demonstrate that nerve-vessel alignment depends on the activity of Cxcl12-Cxcr4 chemokine signaling. Genetic inactivation of Cxcl12-Cxcr4 signaling perturbs nerve-vessel alignment and abolishes arteriogenesis. Further in vitro assays allow us to uncouple nerve-vessel alignment and arteriogenesis, revealing that nerve-derived Cxcl12 stimulates endothelial cell migration, whereas nerve-derived VEGF-A is responsible for arterial differentiation. These findings suggest a coordinated sequential action in which nerve Cxcl12 functions over a distance to recruit vessels to align with nerves, and subsequent arterial differentiation presumably requires a local action of nerve VEGF-A in the nerve-associated vessels.

Citing Articles

In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network.

Kowalski W, Vatti S, Sakamoto T, Li W, Odutola S, Liu C Sci Rep. 2025; 15(1):7150.

PMID: 40021912 PMC: 11871353. DOI: 10.1038/s41598-025-91826-y.


3D imaging reveals changes in the neurovascular architecture of the murine calvarium with aging.

Horenberg A, Ren Y, Zeng E, Rindone A, Pathak A, Grayson W Bone Res. 2025; 13(1):24.

PMID: 39984434 PMC: 11845787. DOI: 10.1038/s41413-025-00401-8.


A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling.

Do L, Delgado E, Lim C, Bkhache M, Peluzzo A, Hua Y Development. 2024; 151(22).

PMID: 39470100 PMC: 11634036. DOI: 10.1242/dev.202901.


Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation.

Vallecillo-Garcia P, Kuhnlein M, Orgeur M, Hansmeier N, Kotsaris G, Meisen Z Development. 2024; 151(17).

PMID: 39221968 PMC: 11441984. DOI: 10.1242/dev.202747.


Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions.

Zhang Y, Shen X, Deng S, Chen Q, Xu B Biomolecules. 2024; 14(8).

PMID: 39199354 PMC: 11353022. DOI: 10.3390/biom14080966.


References
1.
Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff R, Li M . Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A. 2007; 104(37):14759-64. PMC: 1976222. DOI: 10.1073/pnas.0702229104. View

2.
Coultas L, Chawengsaksophak K, Rossant J . Endothelial cells and VEGF in vascular development. Nature. 2005; 438(7070):937-45. DOI: 10.1038/nature04479. View

3.
Kisanuki Y, Hammer R, Miyazaki J, Williams S, Richardson J, Yanagisawa M . Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001; 230(2):230-42. DOI: 10.1006/dbio.2000.0106. View

4.
Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y . The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998; 393(6685):591-4. DOI: 10.1038/31261. View

5.
Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y . Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996; 382(6592):635-8. DOI: 10.1038/382635a0. View