» Articles » PMID: 23375135

Human Systems Immunology: Hypothesis-based Modeling and Unbiased Data-driven Approaches

Overview
Journal Semin Immunol
Date 2013 Feb 5
PMID 23375135
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology.

Citing Articles

Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective.

Xiao Y, Li Y, Zhao H Mol Cancer. 2024; 23(1):202.

PMID: 39294747 PMC: 11409752. DOI: 10.1186/s12943-024-02113-9.


Network-based integrative multi-omics approach reveals biosignatures specific to COVID-19 disease phases.

Agamah F, Ederveen T, Skelton M, Martin D, Chimusa E, t Hoen P Front Mol Biosci. 2024; 11:1393240.

PMID: 39040605 PMC: 11260748. DOI: 10.3389/fmolb.2024.1393240.


Leveraging Structured Biological Knowledge for Counterfactual Inference: A Case Study of Viral Pathogenesis.

Zucker J, Paneri K, Mohammad-Taheri S, Bhargava S, Kolambkar P, Bakker C IEEE Trans Big Data. 2023; 7(1):25-37.

PMID: 37981991 PMC: 8769018. DOI: 10.1109/TBDATA.2021.3050680.


Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins.

Vodovotz Y Trends Immunol. 2023; 44(5):345-355.

PMID: 36967340 PMC: 10147586. DOI: 10.1016/j.it.2023.03.004.


Mechanistic model for booster doses effectiveness in healthy, cancer, and immunosuppressed patients infected with SARS-CoV-2.

Voutouri C, Hardin C, Naranbhai V, Nikmaneshi M, Khandekar M, Gainor J Proc Natl Acad Sci U S A. 2023; 120(3):e2211132120.

PMID: 36623200 PMC: 9934028. DOI: 10.1073/pnas.2211132120.


References
1.
Budu-Grajdeanu P, Schugart R, Friedman A, Birmingham D, Rovin B . Mathematical framework for human SLE Nephritis: disease dynamics and urine biomarkers. Theor Biol Med Model. 2010; 7:14. PMC: 2877652. DOI: 10.1186/1742-4682-7-14. View

2.
Diamond D, Jacobs J, Paeper B, Proll S, Gritsenko M, Carithers Jr R . Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology. 2007; 46(3):649-57. DOI: 10.1002/hep.21751. View

3.
Hlavacek W, Stilianakis N, Notermans D, Danner S, Perelson A . Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. Proc Natl Acad Sci U S A. 2000; 97(20):10966-71. PMC: 27132. DOI: 10.1073/pnas.190065897. View

4.
Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C . Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2006; 109(5):2066-77. PMC: 1801073. DOI: 10.1182/blood-2006-02-002477. View

5.
Chun T, Justement J, Lempicki R, Yang J, Dennis Jr G, Hallahan C . Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc Natl Acad Sci U S A. 2003; 100(4):1908-13. PMC: 149932. DOI: 10.1073/pnas.0437640100. View