» Articles » PMID: 23364527

Mitochondrial Morphology Transitions and Functions: Implications for Retrograde Signaling?

Overview
Specialty Physiology
Date 2013 Feb 1
PMID 23364527
Citations 140
Authors
Affiliations
Soon will be listed here.
Abstract

In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment.

Citing Articles

Zephycandidine A and Synthetic Analogues-Synthesis and Evaluation of Biological Activity.

Klassmuller T, Lengauer F, Blenninger J, Geisslinger F, Bartel K, Bracher F Molecules. 2025; 30(3).

PMID: 39942855 PMC: 11820727. DOI: 10.3390/molecules30030752.


Simulation and quantitative analysis of spatial centromere distribution patterns.

Keikhosravi A, Guin K, Pegoraro G, Misteli T bioRxiv. 2025; .

PMID: 39896519 PMC: 11785228. DOI: 10.1101/2025.01.22.634320.


Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Faitg J, Davey T, Laws R, Lawless C, Tuppen H, Fitton E Commun Biol. 2025; 8(1):24.

PMID: 39789156 PMC: 11718190. DOI: 10.1038/s42003-024-07389-7.


MCL-1 regulates cellular transitions during oligodendrocyte development.

Gil M, Hanna M, Gama V bioRxiv. 2025; .

PMID: 39763750 PMC: 11702758. DOI: 10.1101/2024.12.20.629796.


Potential Add-On Benefits of Dietary Intervention in the Treatment of Autosomal Dominant Polycystic Kidney Disease.

Rosati E, Condello G, Tacente C, Mariani I, Tommolini V, Calvaruso L Nutrients. 2024; 16(16).

PMID: 39203719 PMC: 11357151. DOI: 10.3390/nu16162582.


References
1.
Canto C, Gerhart-Hines Z, Feige J, Lagouge M, Noriega L, Milne J . AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458(7241):1056-60. PMC: 3616311. DOI: 10.1038/nature07813. View

2.
Yoon Y, Galloway C, Jhun B, Yu T . Mitochondrial dynamics in diabetes. Antioxid Redox Signal. 2010; 14(3):439-57. PMC: 3025181. DOI: 10.1089/ars.2010.3286. View

3.
Acin-Perez R, Gatti D, Bai Y, Manfredi G . Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 2011; 13(6):712-9. PMC: 3118639. DOI: 10.1016/j.cmet.2011.03.024. View

4.
Misko A, Sasaki Y, Tuck E, Milbrandt J, Baloh R . Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci. 2012; 32(12):4145-55. PMC: 3319368. DOI: 10.1523/JNEUROSCI.6338-11.2012. View

5.
Indo H, Davidson M, Yen H, Suenaga S, Tomita K, Nishii T . Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007; 7(1-2):106-18. DOI: 10.1016/j.mito.2006.11.026. View