» Articles » PMID: 23355006

Conserved Gene Regulatory Function of the Carboxy-terminal Domain of Dictyostelid C-module-binding Factor

Overview
Journal Eukaryot Cell
Specialty Molecular Biology
Date 2013 Jan 29
PMID 23355006
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

C-module-binding factor A (CbfA) is a jumonji-type transcription regulator that is important for maintaining the expression and mobility of the retrotransposable element TRE5-A in the social amoeba Dictyostelium discoideum. CbfA-deficient cells have lost TRE5-A retrotransposition, are impaired in the ability to feed on bacteria, and do not enter multicellular development because of a block in cell aggregation. In this study, we performed Illumina RNA-seq of growing CbfA mutant cells to obtain a list of CbfA-regulated genes. We demonstrate that the carboxy-terminal domain of CbfA alone is sufficient to mediate most CbfA-dependent gene expression. The carboxy-terminal domain of CbfA from the distantly related social amoeba Polysphondylium pallidum restored the expression of CbfA-dependent genes in the D. discoideum CbfA mutant, indicating a deep conservation in the gene regulatory function of this domain in the dictyostelid clade. The CbfA-like protein CbfB displays ∼25% sequence identity with CbfA in the amino-terminal region, which contains a JmjC domain and two zinc finger regions and is thought to mediate chromatin-remodeling activity. In contrast to CbfA proteins, where the carboxy-terminal domains are strictly conserved in all dictyostelids, CbfB proteins have completely unrelated carboxy-terminal domains. Outside the dictyostelid clade, CbfA-like proteins with the CbfA-archetypical JmjC/zinc finger arrangement and individual carboxy-terminal domains are prominent in filamentous fungi but are not found in yeasts, plants, and metazoans. Our data suggest that two functional regions of the CbfA-like proteins evolved at different rates to allow the occurrence of species-specific adaptation processes during genome evolution.

Citing Articles

The Centrosome.

Graf R, Grafe M, Meyer I, Mitic K, Pitzen V Cells. 2021; 10(10).

PMID: 34685637 PMC: 8534566. DOI: 10.3390/cells10102657.


Retrotransposon Domestication and Control in .

Malicki M, Iliopoulou M, Hammann C Front Microbiol. 2017; 8:1869.

PMID: 29051748 PMC: 5633606. DOI: 10.3389/fmicb.2017.01869.


A host factor supports retrotransposition of the TRE5-A population in Dictyostelium cells by suppressing an Argonaute protein.

Schmith A, Spaller T, Gaube F, Fransson A, Boesler B, Ojha S Mob DNA. 2015; 6:14.

PMID: 26339297 PMC: 4559204. DOI: 10.1186/s13100-015-0045-5.

References
1.
Carbon S, Ireland A, Mungall C, Shu S, Marshall B, Lewis S . AmiGO: online access to ontology and annotation data. Bioinformatics. 2008; 25(2):288-9. PMC: 2639003. DOI: 10.1093/bioinformatics/btn615. View

2.
Schmidt H, Strimmer K, Vingron M, von Haeseler A . TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002; 18(3):502-4. DOI: 10.1093/bioinformatics/18.3.502. View

3.
Agger K, Christensen J, Cloos P, Helin K . The emerging functions of histone demethylases. Curr Opin Genet Dev. 2008; 18(2):159-68. DOI: 10.1016/j.gde.2007.12.003. View

4.
Bilzer A, Dolz H, Reinhardt A, Schmith A, Siol O, Winckler T . The C-module-binding factor supports amplification of TRE5-A retrotransposons in the Dictyostelium discoideum genome. Eukaryot Cell. 2010; 10(1):81-6. PMC: 3019809. DOI: 10.1128/EC.00205-10. View

5.
Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H . Molecular phylogeny and evolution of morphology in the social amoebas. Science. 2006; 314(5799):661-3. PMC: 2173941. DOI: 10.1126/science.1130670. View