Eckart A, Ghimire P
J Clin Med. 2025; 14(2).
PMID: 39860464
PMC: 11766419.
DOI: 10.3390/jcm14020458.
Owess M, Owda A, Owda M, Massad S
Int J Environ Res Public Health. 2024; 21(7).
PMID: 39063417
PMC: 11276316.
DOI: 10.3390/ijerph21070840.
Elshawi R, Sakr S, Al-Mallah M, Keteyian S, Brawner C, Ehrman J
Sci Rep. 2024; 14(1):8745.
PMID: 38627439
PMC: 11021455.
DOI: 10.1038/s41598-024-59401-z.
Wahidin M, Achadi A, Besral B, Kosen S, Nadjib M, Nurwahyuni A
Sci Rep. 2024; 14(1):5424.
PMID: 38443384
PMC: 10914682.
DOI: 10.1038/s41598-024-54563-2.
Turjo E, Rahman M
BMC Nutr. 2024; 10(1):22.
PMID: 38303093
PMC: 10832135.
DOI: 10.1186/s40795-023-00808-8.
Determination of growth and developmental stages in hand-wrist radiographs : Can fractal analysis in combination with artificial intelligence be used?.
Gonca M, Sert M, Gunacar D, Kose T, Beser B
J Orofac Orthop. 2024; 85(Suppl 2):1-15.
PMID: 38252312
DOI: 10.1007/s00056-023-00510-1.
A Machine Learning Web App to Predict Diabetic Blood Glucose Based on a Basic Noninvasive Health Checkup, Sociodemographic Characteristics, and Dietary Information: Case Study.
Sampa M, Biswas T, Rahman M, Aziz N, Hossain M, Aziz N
JMIR Diabetes. 2023; 8:e49113.
PMID: 37999944
PMC: 10709789.
DOI: 10.2196/49113.
Comparative study on risk prediction model of type 2 diabetes based on machine learning theory: a cross-sectional study.
Wang S, Chen R, Wang S, Kong D, Cao R, Lin C
BMJ Open. 2023; 13(8):e069018.
PMID: 37643856
PMC: 10465890.
DOI: 10.1136/bmjopen-2022-069018.
A survey on diabetes risk prediction using machine learning approaches.
Firdous S, Wagai G, Sharma K
J Family Med Prim Care. 2023; 11(11):6929-6934.
PMID: 36993028
PMC: 10041290.
DOI: 10.4103/jfmpc.jfmpc_502_22.
Predicting the Onset of Diabetes with Machine Learning Methods.
Chou C, Hsu D, Chou C
J Pers Med. 2023; 13(3).
PMID: 36983587
PMC: 10057336.
DOI: 10.3390/jpm13030406.
What is the effect of mobile phone text message reminders on medication adherence among adult type 2 diabetes mellitus patients: a systematic review and meta-analysis of randomized controlled trials.
Belete A, Negese Gemeda B, Akalu T, Aynalem Y, Shiferaw W
BMC Endocr Disord. 2023; 23(1):18.
PMID: 36658577
PMC: 9850787.
DOI: 10.1186/s12902-023-01268-8.
Environmental exposures in machine learning and data mining approaches to diabetes etiology: A scoping review.
Mistry S, Riches N, Gouripeddi R, Facelli J
Artif Intell Med. 2023; 135:102461.
PMID: 36628796
PMC: 9834645.
DOI: 10.1016/j.artmed.2022.102461.
Capacity Strengthening Undertaking-Farm Organized Response of Workers against Risk for Diabetes: (C.S.U.-F.O.R.W.A.R.D. with Cal Poly)-A Concept Approach to Tackling Diabetes in Vulnerable and Underserved Farmworkers in California.
Sikalidis A, Kristo A, Reaves S, Kurfess F, DeLay A, Vasilaky K
Sensors (Basel). 2022; 22(21).
PMID: 36365994
PMC: 9654638.
DOI: 10.3390/s22218299.
Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach.
Olusanya M, Ogunsakin R, Ghai M, Adeleke M
Int J Environ Res Public Health. 2022; 19(21).
PMID: 36361161
PMC: 9655196.
DOI: 10.3390/ijerph192114280.
An Integrated Classification and Association Rule Technique for Early-Stage Diabetes Risk Prediction.
Khafaga D, Alharbi A, Mohamed I, Hosny K
Healthcare (Basel). 2022; 10(10).
PMID: 36292517
PMC: 9602561.
DOI: 10.3390/healthcare10102070.
Tracking Health, Performance and Recovery in Athletes Using Machine Learning.
Petrovsky D, Pustovoyt V, Nikolsky K, Malsagova K, Kopylov A, Stepanov A
Sports (Basel). 2022; 10(10).
PMID: 36287773
PMC: 9611450.
DOI: 10.3390/sports10100160.
Predicting the 2-Year Risk of Progression from Prediabetes to Diabetes Using Machine Learning among Chinese Elderly Adults.
Liu Q, Zhou Q, He Y, Zou J, Guo Y, Yan Y
J Pers Med. 2022; 12(7).
PMID: 35887552
PMC: 9324396.
DOI: 10.3390/jpm12071055.
Multi-class classification algorithms for the diagnosis of anemia in an outpatient clinical setting.
Vohra R, Hussain A, Dudyala A, Pahareeya J, Khan W
PLoS One. 2022; 17(7):e0269685.
PMID: 35793343
PMC: 9258850.
DOI: 10.1371/journal.pone.0269685.
Predicting the Risk of Incident Type 2 Diabetes Mellitus in Chinese Elderly Using Machine Learning Techniques.
Liu Q, Zhang M, He Y, Zhang L, Zou J, Yan Y
J Pers Med. 2022; 12(6).
PMID: 35743691
PMC: 9224915.
DOI: 10.3390/jpm12060905.
A novel kernel based approach to arbitrary length symbolic data with application to type 2 diabetes risk.
Nwegbu N, Tirunagari S, Windridge D
Sci Rep. 2022; 12(1):4985.
PMID: 35322076
PMC: 8943170.
DOI: 10.1038/s41598-022-08757-1.