» Articles » PMID: 23325474

MicroRNAs in Metabolic Disease

Overview
Date 2013 Jan 18
PMID 23325474
Citations 131
Authors
Affiliations
Soon will be listed here.
Abstract

Alterations in the metabolic control of lipid and glucose homeostasis predispose an individual to develop cardiometabolic diseases, such as type 2-diabetes mellitus and atherosclerosis. Work over the last years has suggested that microRNAs (miRNAs) play an important role in regulating these physiological processes. The contribution of miRNAs in regulating metabolism is exemplified by miR-33, an intronic miRNA encoded in the Srebp genes. miR-33 controls cellular cholesterol export and fatty acid degradation, whereas its host genes stimulate cholesterol and fatty acid synthesis. Other miRNAs, such as miR-122, also play a critical role in regulating lipid homeostasis by controlling cholesterol synthesis and lipoprotein secretion in the liver. This review article summarizes the recent findings in the field, highlighting the contribution of miRNAs in regulating lipid and glucose metabolism. We will also discuss how the modulation of specific miRNAs may be a promising strategy to treat metabolic diseases.

Citing Articles

Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review.

Bamahel A, Sun X, Wu W, Mu C, Liu J, Bi S Cell Biochem Biophys. 2025; .

PMID: 40016565 DOI: 10.1007/s12013-025-01686-6.


Epigenetic Modifications Associated With Wildland-Urban Interface (WUI) Firefighting.

Goodrich J, Furlong M, Urwin D, Gabriel J, Hughes J, Jung A Environ Mol Mutagen. 2025; 66(1-2):22-33.

PMID: 39968828 PMC: 11905879. DOI: 10.1002/em.70002.


Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids.

Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M JHEP Rep. 2024; 6(9):101126.

PMID: 39263327 PMC: 11388170. DOI: 10.1016/j.jhepr.2024.101126.


MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications.

Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J Front Cell Dev Biol. 2024; 12:1437951.

PMID: 39114567 PMC: 11304453. DOI: 10.3389/fcell.2024.1437951.


Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms.

Improta-Caria A, Ferrari F, Gomes J, Villalta P, Soci U, Stein R World J Diabetes. 2024; 15(6):1187-1198.

PMID: 38983808 PMC: 11229979. DOI: 10.4239/wjd.v15.i6.1187.


References
1.
Zile M, Mehurg S, Arroyo J, Stroud R, DeSantis S, Spinale F . Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011; 4(6):614-9. PMC: 3535326. DOI: 10.1161/CIRCGENETICS.111.959841. View

2.
Kim S, Kim A, Lee H, Son Y, Lee G, Lee J . miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun. 2010; 392(3):323-8. DOI: 10.1016/j.bbrc.2010.01.012. View

3.
Vickers K, Shoucri B, Levin M, Wu H, Pearson D, Osei-Hwedieh D . MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2012; 57(2):533-42. PMC: 3470747. DOI: 10.1002/hep.25846. View

4.
Newman M, Thomson J, Hammond S . Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 2008; 14(8):1539-49. PMC: 2491462. DOI: 10.1261/rna.1155108. View

5.
Poy M, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P . miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009; 106(14):5813-8. PMC: 2656556. DOI: 10.1073/pnas.0810550106. View