» Articles » PMID: 23275860

Handheld Micromanipulation with Vision-Based Virtual Fixtures

Overview
Date 2013 Jan 1
PMID 23275860
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly improve micromanipulator precision. In this paper, we derive a control law for position-based virtual fixtures within the framework of an active handheld micromanipulator, where the fixtures are generated in real-time from microscope video. Additionally, we develop motion scaling behavior centered on virtual fixtures as a simple and direct extension to our formulation. We demonstrate that hard and soft (motion-scaled) virtual fixtures outperform state-of-the-art tremor cancellation performance on a set of artificial but medically relevant tasks: holding, move-and-hold, curve tracing, and volume restriction.

Citing Articles

Design and Evaluation of Haptic Guidance in Ultrasound-Based Needle-Insertion Procedures.

Raitor M, Nunez C, Stolka P, Okamura A, Culbertson H IEEE Trans Biomed Eng. 2023; 71(1):26-35.

PMID: 37384470 PMC: 11803533. DOI: 10.1109/TBME.2023.3290919.


Human eye phantom for developing computer and robot-assisted epiretinal membrane peeling.

Gupta A, Gonenc B, Balicki M, Olds K, Handa J, Gehlbach P Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2014:6864-7.

PMID: 25571573 PMC: 4288026. DOI: 10.1109/EMBC.2014.6945205.


Refocusing a scanned laser projector for small and bright images: simultaneously controlling the profile of the laser beam and the boundary of the image.

Horvath S, Galeotti J, Siegel M, Stetten G Appl Opt. 2014; 53(24):5421-4.

PMID: 25321114 PMC: 4476398. DOI: 10.1364/AO.53.005421.


An Ungrounded Hand-Held Surgical Device Incorporating Active Constraints with Force-Feedback.

Payne C, Kwok K, Yang G Rep U S. 2014; 2013:2559-2565.

PMID: 24744963 PMC: 3987169. DOI: 10.1109/IROS.2013.6696717.


Position-Based Virtual Fixtures for Membrane Peeling with a Handheld Micromanipulator.

Becker B, MacLachlan R, Lobes Jr L, Riviere C IEEE Int Conf Robot Autom. 2014; 2012:1075-1080.

PMID: 24724041 PMC: 3979321. DOI: 10.1109/ICRA.2012.6224844.


References
1.
Becker B, Voros S, MacLachlan R, Hager G, Riviere C . Active Guidance of a Handheld Micromanipulator using Visual Servoing. IEEE Int Conf Robot Autom. 2011; 2009:339-344. PMC: 3111959. DOI: 10.1109/ROBOT.2009.5152632. View

2.
MacLachlan R, Riviere C . High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing. IEEE Trans Instrum Meas. 2010; 58(6):1991-2001. PMC: 2860315. DOI: 10.1109/TIM.2008.2006132. View

3.
Davies B, Harris S, Lin W, Hibberd R, Middleton R, Cobb J . Active compliance in robotic surgery--the use of force control as a dynamic constraint. Proc Inst Mech Eng H. 1997; 211(4):285-92. DOI: 10.1243/0954411971534403. View

4.
Das H, Zak H, Johnson J, Crouch J, Frambach D . Evaluation of a telerobotic system to assist surgeons in microsurgery. Comput Aided Surg. 1999; 4(1):15-25. DOI: 10.1002/(SICI)1097-0150(1999)4:1<15::AID-IGS2>3.0.CO;2-0. View

5.
Becker B, Voros S, Lobes L, Handa J, Hager G, Riviere C . Retinal vessel cannulation with an image-guided handheld robot. Annu Int Conf IEEE Eng Med Biol Soc. 2010; 2010:5420-3. PMC: 3254181. DOI: 10.1109/IEMBS.2010.5626493. View