» Articles » PMID: 23272087

Inactivation of ATM/ATR DNA Damage Checkpoint Promotes Androgen Induced Chromosomal Instability in Prostate Epithelial Cells

Overview
Journal PLoS One
Date 2012 Dec 29
PMID 23272087
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The ATM/ATR DNA damage checkpoint functions in the maintenance of genetic stability and some missense variants of the ATM gene have been shown to confer a moderate increased risk of prostate cancer. However, whether inactivation of this checkpoint contributes directly to prostate specific cancer predisposition is still unknown. Here, we show that exposure of non-malignant prostate epithelial cells (HPr-1AR) to androgen led to activation of the ATM/ATR DNA damage response and induction of cellular senescence. Notably, knockdown of the ATM gene expression in HPr-1AR cells can promote androgen-induced TMPRSS2: ERG rearrangement, a prostate-specific chromosome translocation frequently found in prostate cancer cells. Intriguingly, unlike the non-malignant prostate epithelial cells, the ATM/ATR DNA damage checkpoint appears to be defective in prostate cancer cells, since androgen treatment only induced a partial activation of the DNA damage response. This mechanism appears to preserve androgen induced autophosphorylation of ATM and phosphorylation of H2AX, lesion processing and repair pathway yet restrain ATM/CHK1/CHK2 and p53 signaling pathway. Our findings demonstrate that ATM/ATR inactivation is a crucial step in promoting androgen-induced genomic instability and prostate carcinogenesis.

Citing Articles

Targeting Prostate Cancer, the 'Tousled Way'.

Bhoir S, De Benedetti A Int J Mol Sci. 2023; 24(13).

PMID: 37446279 PMC: 10341820. DOI: 10.3390/ijms241311100.


Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients.

Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J Cells. 2022; 11(22).

PMID: 36429046 PMC: 9688453. DOI: 10.3390/cells11223618.


BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations.

Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S Int J Mol Sci. 2021; 22(23).

PMID: 34884434 PMC: 8657599. DOI: 10.3390/ijms222312628.


SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair.

El Bezawy R, Tripari M, Percio S, Cicchetti A, Tortoreto M, Stucchi C Cancers (Basel). 2020; 12(6).

PMID: 32512734 PMC: 7352729. DOI: 10.3390/cancers12061462.


Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors.

Singh V, Jaiswal P, Ghosh I, Koul H, Yu X, De Benedetti A Int J Cancer. 2019; 145(4):1055-1067.

PMID: 30737777 PMC: 6617729. DOI: 10.1002/ijc.32200.


References
1.
Angele S, Falconer A, Edwards S, Dork T, Bremer M, Moullan N . ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer. 2004; 91(4):783-7. PMC: 2364767. DOI: 10.1038/sj.bjc.6602007. View

2.
Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster C . Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene. 2006; 26(18):2667-73. DOI: 10.1038/sj.onc.1210070. View

3.
Rickman D, Pflueger D, Moss B, VanDoren V, Chen C, De La Taille A . SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 2009; 69(7):2734-8. PMC: 4063441. DOI: 10.1158/0008-5472.CAN-08-4926. View

4.
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K . DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005; 434(7035):864-70. DOI: 10.1038/nature03482. View

5.
Shiloh Y . The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 2006; 31(7):402-10. DOI: 10.1016/j.tibs.2006.05.004. View