» Articles » PMID: 23262489

The Voltage-dependent Gate in MthK Potassium Channels is Located at the Selectivity Filter

Overview
Date 2012 Dec 25
PMID 23262489
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding how ion channels open and close their pores is crucial for comprehending their physiological roles. We used intracellular quaternary ammonium blockers, electrophysiology and X-ray crystallography to locate the voltage-dependent gate in MthK potassium channels from Methanobacterium thermoautotrophicum. Blockers bind in an aqueous cavity between two putative gates: an intracellular gate and the selectivity filter. Thus, these blockers directly probe gate location--an intracellular gate will prevent binding when closed, whereas a selectivity filter gate will always allow binding. Kinetic analysis of tetrabutylammonium block of single MthK channels combined with X-ray crystallographic analysis of the pore with tetrabutyl antimony unequivocally determined that the voltage-dependent gate, like the C-type inactivation gate in eukaryotic channels, is located at the selectivity filter. State-dependent binding kinetics suggest that MthK inactivation leads to conformational changes within the cavity and intracellular pore entrance.

Citing Articles

Binding kinetics of quaternary ammonium ions in Kcv potassium channels.

Korn T, Hansen U, Gabriel T, Rauh O, Drexler N, Schroeder I Channels (Austin). 2024; 18(1):2402749.

PMID: 39383513 PMC: 11575739. DOI: 10.1080/19336950.2024.2402749.


An LQT2-related mutation in the voltage-sensing domain is involved in switching the gating polarity of hERG.

Liu Z, Wang F, Yuan H, Tian F, Yang C, Hu F BMC Biol. 2024; 22(1):29.

PMID: 38317233 PMC: 11380439. DOI: 10.1186/s12915-024-01833-0.


Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels.

Nordquist E, Zhang G, Barethiya S, Ji N, White K, Han L PLoS Comput Biol. 2023; 19(9):e1011460.

PMID: 37713443 PMC: 10529646. DOI: 10.1371/journal.pcbi.1011460.


Calcium-gated potassium channel blockade via membrane-facing fenestrations.

Fan C, Flood E, Sukomon N, Agarwal S, Allen T, Nimigean C Nat Chem Biol. 2023; 20(1):52-61.

PMID: 37653172 PMC: 10847966. DOI: 10.1038/s41589-023-01406-2.


Incorporating physics to overcome data scarcity in predictive modeling of protein function: a case study of BK channels.

Nordquist E, Zhang G, Barethiya S, Ji N, White K, Han L bioRxiv. 2023; .

PMID: 37425916 PMC: 10327070. DOI: 10.1101/2023.06.24.546384.


References
1.
Panyi G, Deutsch C . Probing the cavity of the slow inactivated conformation of shaker potassium channels. J Gen Physiol. 2007; 129(5):403-18. PMC: 2154382. DOI: 10.1085/jgp.200709758. View

2.
Nimigean C, Miller C . Na+ block and permeation in a K+ channel of known structure. J Gen Physiol. 2002; 120(3):323-35. PMC: 2229518. DOI: 10.1085/jgp.20028614. View

3.
Yellen G . The moving parts of voltage-gated ion channels. Q Rev Biophys. 1999; 31(3):239-95. DOI: 10.1017/s0033583598003448. View

4.
Adams P, Afonine P, Bunkoczi G, Chen V, Davis I, Echols N . PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 2):213-21. PMC: 2815670. DOI: 10.1107/S0907444909052925. View

5.
Guo D, Lu Z . Kinetics of inward-rectifier K+ channel block by quaternary alkylammonium ions. dimension and properties of the inner pore. J Gen Physiol. 2001; 117(5):395-406. PMC: 2233664. DOI: 10.1085/jgp.117.5.395. View