» Articles » PMID: 23235143

Dietary Restriction and Mitochondrial Function Link Replicative and Chronological Aging in Saccharomyces Cerevisiae

Abstract

Chronological aging of budding yeast cells results in a reduction in subsequent replicative life span through unknown mechanisms. Here we show that dietary restriction during chronological aging delays the reduction in subsequent replicative life span up to at least 23days of chronological age. We further show that among the viable portion of the control population aged 26days, individual cells with the lowest mitochondrial membrane potential have the longest subsequent replicative lifespan. These observations demonstrate that dietary restriction modulates a common molecular mechanism linking chronological and replicative aging in yeast and indicate a critical role for mitochondrial function in this process.

Citing Articles

Deficiency in Yeast Induces Endoplasmic Reticulum Stress and Shortens the Chronological Lifespan.

Tang D, Guan W, Yang X, Li Z, Zhao W, Liu X Biomolecules. 2025; 15(2).

PMID: 40001574 PMC: 11853210. DOI: 10.3390/biom15020271.


Disturbances in cell wall biogenesis as a key factor in the replicative aging of budding yeast.

Molon M, Malek G, Bzducha-Wrobel A, Kula-Maximenko M, Molon A, Galiniak S Biogerontology. 2025; 26(2):54.

PMID: 39907841 DOI: 10.1007/s10522-025-10196-0.


Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging.

Enkhbaatar T, Skoneczny M, Stepien K, Molon M, Skoneczna A Aging (Albany NY). 2023; 15(19):9965-9983.

PMID: 37815879 PMC: 10599738. DOI: 10.18632/aging.205102.


The Effect of Calorie Restriction on Protein Quality Control in Yeast.

Uvdal P, Shashkova S Biomolecules. 2023; 13(5).

PMID: 37238710 PMC: 10216387. DOI: 10.3390/biom13050841.


Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan.

Phua C, Zhao X, Turcios-Hernandez L, McKernan M, Abyadeh M, Ma S Geroscience. 2023; 45(4):2161-2178.

PMID: 37086368 PMC: 10651825. DOI: 10.1007/s11357-023-00796-4.


References
1.
Jiang J, Jaruga E, Repnevskaya M, Jazwinski S . An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 2000; 14(14):2135-7. DOI: 10.1096/fj.00-0242fje. View

2.
Lai C, Jaruga E, Borghouts C, Jazwinski S . A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics. 2002; 162(1):73-87. PMC: 1462265. DOI: 10.1093/genetics/162.1.73. View

3.
Kaeberlein M . Lessons on longevity from budding yeast. Nature. 2010; 464(7288):513-9. PMC: 3696189. DOI: 10.1038/nature08981. View

4.
Wu Z, Song L, Liu S, Huang D . A high throughput screening assay for determination of chronological lifespan of yeast. Exp Gerontol. 2011; 46(11):915-22. DOI: 10.1016/j.exger.2011.08.002. View

5.
Fabrizio P, Pletcher S, Minois N, Vaupel J, Longo V . Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett. 2004; 557(1-3):136-42. DOI: 10.1016/s0014-5793(03)01462-5. View