» Articles » PMID: 23213235

G-protein Signaling Leverages Subunit-dependent Membrane Affinity to Differentially Control βγ Translocation to Intracellular Membranes

Overview
Specialty Science
Date 2012 Dec 6
PMID 23213235
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

Citing Articles

Spatiotemporal Optical Control of Gαq-PLCβ Interactions.

Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan 3rd T, Karunarathne A ACS Synth Biol. 2023; 13(1):242-258.

PMID: 38092428 PMC: 11863898. DOI: 10.1021/acssynbio.3c00490.


Molecular annotation of G protein variants in a neurological disorder.

Knight K, Obarow E, Wei W, Mani S, Esteller M, Cui M Cell Rep. 2023; 42(12):113462.

PMID: 37980565 PMC: 10872635. DOI: 10.1016/j.celrep.2023.113462.


Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi heterotrimers.

Rysiewicz B, Blasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A Cell Commun Signal. 2023; 21(1):279.

PMID: 37817242 PMC: 10566112. DOI: 10.1186/s12964-023-01307-w.


CaaX-motif adjacent residues control G protein prenylation under suboptimal conditions.

Tennakoon M, Thotamune W, Payton J, Karunarathne A bioRxiv. 2023; .

PMID: 37461501 PMC: 10349941. DOI: 10.1101/2023.07.04.547731.


Molecular regulation of PLCβ signaling.

Ubeysinghe S, Wijayaratna D, Kankanamge D, Karunarathne A Methods Enzymol. 2023; 682:17-52.

PMID: 36948701 PMC: 11863860. DOI: 10.1016/bs.mie.2023.01.001.


References
1.
Leventis R, Silvius J . Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry. 1998; 37(20):7640-8. DOI: 10.1021/bi973077h. View

2.
Nenninger A, Mastroianni G, Mullineaux C . Size dependence of protein diffusion in the cytoplasm of Escherichia coli. J Bacteriol. 2010; 192(18):4535-40. PMC: 2937421. DOI: 10.1128/JB.00284-10. View

3.
Marrari Y, Crouthamel M, Irannejad R, Wedegaertner P . Assembly and trafficking of heterotrimeric G proteins. Biochemistry. 2007; 46(26):7665-77. PMC: 2527407. DOI: 10.1021/bi700338m. View

4.
Kadereit D, Deck P, Heinemann I, Waldmann H . Acid-labile protecting groups for the synthesis of lipidated peptides. Chemistry. 2001; 7(6):1184-93. DOI: 10.1002/1521-3765(20010316)7:6<1184::aid-chem1184>3.0.co;2-5. View

5.
Cho J, Kumar Saini D, Karunarathne W, Kalyanaraman V, Gautam N . Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cell Signal. 2011; 23(5):785-93. PMC: 3085901. DOI: 10.1016/j.cellsig.2011.01.001. View