» Articles » PMID: 23197695

Concise Review: Stem Cell Therapy for Muscular Dystrophies

Overview
Date 2012 Dec 1
PMID 23197695
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the important challenges that must be addressed as stem cell therapy is brought to the clinic.

Citing Articles

Implications of notch signaling in duchenne muscular dystrophy.

Den Hartog L, Asakura A Front Physiol. 2022; 13:984373.

PMID: 36237531 PMC: 9553129. DOI: 10.3389/fphys.2022.984373.


Pathophysiology and genetics of salt-sensitive hypertension.

Maaliki D, Itani M, Itani H Front Physiol. 2022; 13:1001434.

PMID: 36176775 PMC: 9513236. DOI: 10.3389/fphys.2022.1001434.


The Phosphonate Derivative of C Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells.

Kostyuk S, Proskurnina E, Ershova E, Kameneva L, Malinovskaya E, Savinova E Int J Mol Sci. 2021; 22(17).

PMID: 34502190 PMC: 8431706. DOI: 10.3390/ijms22179284.


Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review.

Ebrahimi A, Ahmadi H, Pourfraidon Ghasrodashti Z, Tanide N, Shahriarirad R, Erfani A Bosn J Basic Med Sci. 2021; 21(6):672-701.

PMID: 34255619 PMC: 8554700. DOI: 10.17305/bjbms.2021.5508.


Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells.

Choi I, Lim H, Che Y, Lee G, Kim Y Cells. 2021; 10(7).

PMID: 34209364 PMC: 8303216. DOI: 10.3390/cells10071649.


References
1.
Emery A . The muscular dystrophies. Lancet. 2002; 359(9307):687-95. DOI: 10.1016/S0140-6736(02)07815-7. View

2.
Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J . In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther. 2009; 17(10):1771-8. PMC: 2835017. DOI: 10.1038/mt.2009.167. View

3.
Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T . Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J. 2010; 24(7):2245-53. DOI: 10.1096/fj.09-137174. View

4.
Gussoni E, Blau H, Kunkel L . The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med. 1997; 3(9):970-7. DOI: 10.1038/nm0997-970. View

5.
Charlton C, MOHLER W, Blau H . Neural cell adhesion molecule (NCAM) and myoblast fusion. Dev Biol. 2000; 221(1):112-9. DOI: 10.1006/dbio.2000.9654. View