» Articles » PMID: 23189933

Elucidating Multiscale Periosteal Mechanobiology: a Key to Unlocking the Smart Properties and Regenerative Capacity of the Periosteum?

Overview
Date 2012 Nov 30
PMID 23189933
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure-function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials.

Citing Articles

Bone Changes With Silicone Chin Implants: Clinical Case, Review, and Considerations for Technique Modification.

Madorsky S, Meltzer O Plast Reconstr Surg Glob Open. 2025; 13(2):e6521.

PMID: 39925480 PMC: 11805566. DOI: 10.1097/GOX.0000000000006521.


Collagen molecular organization preservation in human fascia lata and periosteum after tissue engineering.

Vettese J, Manon J, Chretien A, Evrard R, Fieve L, Schubert T Front Bioeng Biotechnol. 2024; 12:1275709.

PMID: 38633664 PMC: 11021576. DOI: 10.3389/fbioe.2024.1275709.


A spike in circulating cytokines TNF-α and TGF-β alters barrier function between vascular and musculoskeletal tissues.

Ngo L, Knothe Tate M Sci Rep. 2023; 13(1):9119.

PMID: 37277369 PMC: 10241787. DOI: 10.1038/s41598-023-30322-7.


A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept.

Manon J, Evrard R, Fieve L, Bouzin C, Magnin D, Xhema D Bioengineering (Basel). 2023; 10(2).

PMID: 36829637 PMC: 9952848. DOI: 10.3390/bioengineering10020143.


Role of periosteum in alveolar bone regeneration comparing with collagen membrane in a buccal dehiscence model of dogs.

Ma Z, Guo K, Chen L, Chen X, Zou D, Yang C Sci Rep. 2023; 13(1):2505.

PMID: 36781898 PMC: 9925434. DOI: 10.1038/s41598-023-28779-7.


References
1.
Bishop G, Einhorn T . Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop. 2007; 31(6):721-7. PMC: 2266667. DOI: 10.1007/s00264-007-0424-8. View

2.
Isaksson H, Comas O, van Donkelaar C, Mediavilla J, Wilson W, Huiskes R . Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech. 2006; 40(9):2002-11. DOI: 10.1016/j.jbiomech.2006.09.028. View

3.
HSIEH Y, Turner C . Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res. 2001; 16(5):918-24. DOI: 10.1359/jbmr.2001.16.5.918. View

4.
Solchaga L, Cassiede P, Caplan A . Different response to osteo-inductive agents in bone marrow- and periosteum-derived cell preparations. Acta Orthop Scand. 1998; 69(4):426-32. DOI: 10.3109/17453679808999061. View

5.
Moukoko D, Pourquier D, Pithioux M, Chabrand P . Influence of cyclic bending loading on in vivo skeletal tissue regeneration from periosteal origin. Orthop Traumatol Surg Res. 2010; 96(8):833-9. DOI: 10.1016/j.otsr.2010.07.006. View