» Articles » PMID: 23133345

Next-generation Sequencing of Human Mitochondrial Reference Genomes Uncovers High Heteroplasmy Frequency

Abstract

We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate <5.63×10(-4), nucleotide diversity of 1.6×10(-3) for CEU and 3.7×10(-3) for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.

Citing Articles

Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era.

Hernandez C Genes (Basel). 2023; 14(8).

PMID: 37628587 PMC: 10453943. DOI: 10.3390/genes14081534.


High-frequency and functional mitochondrial DNA mutations at the single-cell level.

Guo X, Xu W, Zhang W, Pan C, Thalacker-Mercer A, Zheng H Proc Natl Acad Sci U S A. 2022; 120(1):e2201518120.

PMID: 36577067 PMC: 9910596. DOI: 10.1073/pnas.2201518120.


Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature.

Reddam A, McLarnan S, Kupsco A Curr Environ Health Rep. 2022; 9(4):631-649.

PMID: 35902457 PMC: 9729331. DOI: 10.1007/s40572-022-00371-7.


Evaluating the suitability of current mitochondrial DNA interpretation guidelines for multigenerational whole mitochondrial genome comparisons.

Connell J, Benton M, Lea R, Sutherland H, Haupt L, Wright K J Forensic Sci. 2022; 67(5):1766-1775.

PMID: 35855536 PMC: 9543078. DOI: 10.1111/1556-4029.15097.


Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease.

Wang J, Balciuniene J, Diaz-Miranda M, McCormick E, Aref-Eshghi E, Muir A Mol Genet Metab. 2021; 135(1):93-101.

PMID: 34969639 PMC: 8877466. DOI: 10.1016/j.ymgme.2021.12.006.


References
1.
White D, Wolff J, Pierson M, Gemmell N . Revealing the hidden complexities of mtDNA inheritance. Mol Ecol. 2009; 17(23):4925-42. DOI: 10.1111/j.1365-294X.2008.03982.x. View

2.
Anderson S, Bankier A, Barrell B, de Bruijn M, Coulson A, Drouin J . Sequence and organization of the human mitochondrial genome. Nature. 1981; 290(5806):457-65. DOI: 10.1038/290457a0. View

3.
Upholt W, Dawid I . Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region. Cell. 1977; 11(3):571-83. DOI: 10.1016/0092-8674(77)90075-7. View

4.
Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y . A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med. 1994; 330(14):962-8. DOI: 10.1056/NEJM199404073301403. View

5.
Olivo P, Van de Walle M, Laipis P, Hauswirth W . Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature. 1983; 306(5941):400-2. DOI: 10.1038/306400a0. View