» Articles » PMID: 23129976

Light-dependent Changes in Outer Retinal Water Diffusion in Rats in Vivo

Overview
Journal Mol Vis
Date 2012 Nov 7
PMID 23129976
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To test the hypothesis that in rats, intraretinal light-dependent changes on diffusion-weighted magnetic resonance imaging (MRI) in vivo are consistent with known retinal layer-specific physiology.

Methods: In male Sprague-Dawley rats, retinal morphology (thickness, extent, surface area, volume) and intraretinal profiles of the apparent diffusion coefficient (ADC, i.e., water mobility) parallel and perpendicular to the optic nerve were measured in vivo using quantitative MRI methods during light and dark stimulation.

Results: The parallel ADC in the posterior half of the avascular, photoreceptor-dominated outer retina was significantly higher in light than dark, and this pattern was reversed (dark>light) in the anterior outer retina. The perpendicular ADC in the posterior outer retina was similar in light and dark, but was significantly higher in dark than light in the anterior outer retina. No light-dark changes in the inner retina were noted.

Conclusions: We identified light-dependent intraretinal diffusion changes that reflected established stimulation-based changes in outer retinal hydration. These findings are expected to motivate future applications of functional diffusion-based MRI in blinding disorders of the outer retina.

Citing Articles

Polarization optical coherence tomography optoretinography: verifying light-induced photoreceptor outer segment shrinkage and subretinal space expansion.

Ahmed S, Son T, Ma G, Yao X Neurophotonics. 2025; 12(1):015005.

PMID: 39872019 PMC: 11770343. DOI: 10.1117/1.NPh.12.1.015005.


Kir4.1 and Aqp4 Contribution to Schisis Cystic Water Accumulation and Clearance in the Rs1 Exon-1 Del XLRS Rat Model.

Smit-McBride Z, Sun N, Thomas S, Cho I, Stricklin R, Sieving P Genes (Basel). 2025; 15(12.

PMID: 39766850 PMC: 11675908. DOI: 10.3390/genes15121583.


pH in the vertebrate retina and its naturally occurring and pathological changes.

Dmitriev A, Linsenmeier R Prog Retin Eye Res. 2024; 104():101321.

PMID: 39608565 PMC: 11711014. DOI: 10.1016/j.preteyeres.2024.101321.


The Surviving, Not Thriving, Photoreceptors in Patients with Stargardt Disease.

De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula J Diagnostics (Basel). 2024; 14(14).

PMID: 39061682 PMC: 11275370. DOI: 10.3390/diagnostics14141545.


Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice.

Berkowitz B, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky R, Bustos A Acta Neuropathol Commun. 2024; 12(1):85.

PMID: 38822433 PMC: 11140992. DOI: 10.1186/s40478-024-01799-8.


References
1.
Autio J, Kershaw J, Shibata S, Obata T, Kanno I, Aoki I . High b-value diffusion-weighted fMRI in a rat forepaw electrostimulation model at 7 T. Neuroimage. 2011; 57(1):140-148. DOI: 10.1016/j.neuroimage.2011.04.006. View

2.
Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich M, Hackam A . In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2007; 48(4):1808-14. DOI: 10.1167/iovs.06-0815. View

3.
Shih Y, De La Garza B, Muir E, Rogers W, Harrison J, Kiel J . Lamina-specific functional MRI of retinal and choroidal responses to visual stimuli. Invest Ophthalmol Vis Sci. 2011; 52(8):5303-10. PMC: 3176082. DOI: 10.1167/iovs.10-6438. View

4.
Murakami M, Otsuka T, Shimazaki H . Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Res. 1975; 15(3):456-8. DOI: 10.1016/0042-6989(75)90101-7. View

5.
Nagata A, Higashide T, Ohkubo S, Takeda H, Sugiyama K . In vivo quantitative evaluation of the rat retinal nerve fiber layer with optical coherence tomography. Invest Ophthalmol Vis Sci. 2009; 50(6):2809-15. DOI: 10.1167/iovs.08-2764. View