Survival Curve Estimation with Dependent Left Truncated Data Using Cox's Model
Overview
Authors
Affiliations
The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.
Rizzo M, Pezzicoli G, Povero M, Pradelli L, Sicari E, Barbiero V ESMO Open. 2025; 10(3):104294.
PMID: 39965361 PMC: 11876921. DOI: 10.1016/j.esmoop.2025.104294.
Doubly robust estimation under covariate-induced dependent left truncation.
Wang Y, Ying A, Xu R Biometrika. 2024; 111(3):789-808.
PMID: 39691694 PMC: 11648126. DOI: 10.1093/biomet/asae005.
Hackshaw A, Fajardo O, Dafni U, Gelderblom H, Garrido P, Siena S JCO Precis Oncol. 2024; 8:e2300334.
PMID: 38271655 PMC: 10830092. DOI: 10.1200/PO.23.00334.
Estimating survival parameters under conditionally independent left truncation.
Sondhi A Pharm Stat. 2022; 21(5):895-906.
PMID: 35262259 PMC: 9545094. DOI: 10.1002/pst.2202.
Accounting for Delayed Entry in Analyses of Overall Survival in Clinico-Genomic Databases.
Backenroth D, Snider J, Shen R, Seshan V, Castellanos E, McCusker M Cancer Epidemiol Biomarkers Prev. 2022; 31(6):1195-1201.
PMID: 35027431 PMC: 9377725. DOI: 10.1158/1055-9965.EPI-21-0876.