» Articles » PMID: 23094959

Pyrazole-substituted Near-infrared Cyanine Dyes Exhibit PH-dependent Fluorescence Lifetime Properties

Overview
Date 2012 Oct 26
PMID 23094959
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Near-infrared heptamethine cyanine dye is functionalized with pyrazole derivatives at the meso-position to induce pH-dependent photophysical properties. The presence of pyrazole unsubstituted at (1) N-position is essential to induce pH-dependent fluorescence intensity and lifetime changes in these dyes. Replacement of meso-chloro group of cyanine dye IR820 with (1) N-unsubstituted pyrazole resulted in the pH-dependent fluorescence lifetime changes from 0.93 ns in neutral media to 1.27 ns in acidic media in DMSO. Time-resolved emission spectra (TRES) revealed that at lower pH, the pyrazole consists of fluorophores with two distinct lifetimes, which cor-responds to pH-sensitive and non-pH-sensitive species. In contrast, (1) N-substituted pyrazoles do not exhibit pH response, suggesting excited state electron transfer as the mechanism of pH-dependent fluorescence lifetime sensitivity for this class of compounds.

Citing Articles

Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2-pyrazolo[4,3-]pyridines.

Razmiene B, Reznickova E, Dambrauskiene V, Ostruszka R, Kubala M, Zukauskaite A Molecules. 2021; 26(21).

PMID: 34771163 PMC: 8588486. DOI: 10.3390/molecules26216747.


Copper-Catalyzed Syntheses of Pyrene-Pyrazole Pharmacophores and Structure Activity Studies for Tubulin Polymerization.

Sar D, Srivastava I, Misra S, Ostadhossein F, Fathi P, Pan D ACS Omega. 2018; 3(6):6378-6387.

PMID: 30221233 PMC: 6130796. DOI: 10.1021/acsomega.8b00320.


Synthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes.

Levitz A, Marmarchi F, Henary M Molecules. 2018; 23(2).

PMID: 29364846 PMC: 6017188. DOI: 10.3390/molecules23020226.


In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging.

Jo J, Lee C, Kopelman R, Wang X Nat Commun. 2017; 8(1):471.

PMID: 28883396 PMC: 5589864. DOI: 10.1038/s41467-017-00598-1.


Cyanine polyene reactivity: scope and biomedical applications.

Gorka A, Nani R, Schnermann M Org Biomol Chem. 2015; 13(28):7584-98.

PMID: 26052876 PMC: 7780248. DOI: 10.1039/c5ob00788g.


References
1.
Benson R, Kues H . Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol. 1978; 23(1):159-63. DOI: 10.1088/0031-9155/23/1/017. View

2.
Hassan M, Riley J, Chernomordik V, Smith P, Pursley R, Lee S . Fluorescence lifetime imaging system for in vivo studies. Mol Imaging. 2007; 6(4):229-36. PMC: 3512197. View

3.
Boens N, Qin W, Basaric N, Orte A, Talavera E, Alvarez-Pez J . Photophysics of the fluorescent pH indicator BCECF. J Phys Chem A. 2006; 110(30):9334-43. DOI: 10.1021/jp0615712. View

4.
Murtaza Z, Chang Q, Rao G, Lin H, Lakowicz J . Long-lifetime metal-ligand pH probe. Anal Biochem. 1997; 247(2):216-22. PMC: 6816250. DOI: 10.1006/abio.1997.2057. View

5.
Mordon S, Devoisselle J, Soulie S . Fluorescence spectroscopy of pH in vivo using a dual-emission fluorophore (C-SNAFL-1). J Photochem Photobiol B. 1995; 28(1):19-23. DOI: 10.1016/1011-1344(94)07100-3. View