» Articles » PMID: 23084916

Host Translation at the Nexus of Infection and Immunity

Overview
Publisher Cell Press
Date 2012 Oct 23
PMID 23084916
Citations 85
Authors
Affiliations
Soon will be listed here.
Abstract

By controlling gene expression at the level of mRNA translation, organisms temporally and spatially respond swiftly to an ever-changing array of environmental conditions. This capacity for rapid response is ideally suited for mobilizing host defenses and coordinating innate responses to infection. Not surprisingly, a growing list of pathogenic microbes target host mRNA translation for inhibition. Infection with bacteria, protozoa, viruses, and fungi has the capacity to interfere with ongoing host protein synthesis and thereby trigger and/or suppress powerful innate responses. This review discusses how diverse pathogens manipulate the host translation machinery and the impact of these interactions on infection biology and the immune response.

Citing Articles

Translation initiation or elongation inhibition triggers contrasting effects on survival during pathogen infection.

Ghosh A, Singh J mBio. 2024; 15(11):e0248524.

PMID: 39347574 PMC: 11559039. DOI: 10.1128/mbio.02485-24.


Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis.

Andrews J, Zhang Z, Prasad G, Huey F, Nazarova E, Wang J Mucosal Immunol. 2024; 17(5):825-842.

PMID: 38844208 PMC: 11493682. DOI: 10.1016/j.mucimm.2024.05.007.


Strategies of bacterial detection by inflammasomes.

Jastrab J, Kagan J Cell Chem Biol. 2024; 31(5):835-850.

PMID: 38636521 PMC: 11103797. DOI: 10.1016/j.chembiol.2024.03.009.


Bioinformatics and system biology approach to identify the influences among COVID-19, influenza, and HIV on the regulation of gene expression.

Zhang Z, Jin H, Zhang X, Bai M, Zheng K, Tian J Front Immunol. 2024; 15:1369311.

PMID: 38601162 PMC: 11004287. DOI: 10.3389/fimmu.2024.1369311.


COVID-19 immune signatures in Uganda persist in HIV co-infection and diverge by pandemic phase.

Cummings M, Bakamutumaho B, Lutwama J, Owor N, Che X, Astorkia M Nat Commun. 2024; 15(1):1475.

PMID: 38368384 PMC: 10874401. DOI: 10.1038/s41467-024-45204-3.


References
1.
Libri V, Helwak A, Miesen P, Santhakumar D, Borger J, Kudla G . Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci U S A. 2011; 109(1):279-84. PMC: 3252920. DOI: 10.1073/pnas.1114204109. View

2.
Malathi K, Dong B, Gale Jr M, Silverman R . Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature. 2007; 448(7155):816-9. PMC: 3638316. DOI: 10.1038/nature06042. View

3.
Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D . Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol. 2011; 12(10):984-91. PMC: 3526977. DOI: 10.1038/ni.2097. View

4.
Walsh D, Mathews M, Mohr I . Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol. 2012; 5(1):a012351. PMC: 3579402. DOI: 10.1101/cshperspect.a012351. View

5.
Chakrabarti S, Liehl P, Buchon N, Lemaitre B . Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe. 2012; 12(1):60-70. DOI: 10.1016/j.chom.2012.06.001. View