» Articles » PMID: 23084420

Contribution of SUMO-interacting Motifs and SUMOylation to the Antiretroviral Properties of TRIM5α

Overview
Journal Virology
Specialty Microbiology
Date 2012 Oct 23
PMID 23084420
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Recent findings suggested that the SUMO-interacting motifs (SIMs) present in the human TRIM5α (TRIM5α(hu)) protein play an important role in the ability of TRIM5α(hu) to restrict N-MLV. Here we explored the role of SIMs in the ability of rhesus TRIM5α (TRIM5α(rh)) to restrict HIV-1, and found that TRIM5α(rh) SIM mutants IL376KK (SIM1mut) and VI405KK (SIM2mut) completely lost their ability to block HIV-1 infection. Interestingly, these mutants also lost the recently described property of TRIM5α(rh) to shuttle into the nucleus. Analysis of these variants revealed that they are unable to interact with the HIV-1 core, which might explain the reason that these variants are not active against HIV-1. Furthermore, NMR titration experiments to assay the binding between the PRYSPRY domain of TRIM5α(rh) and the small ubiquitin-like modifier 1(SUMO-1) revealed no interaction. In addition, we examined the role of SUMOylation in restriction, and find out that inhibition of SUMOylation by the adenoviral protein Gam1 did not alter the retroviral restriction ability of TRIM5α. Overall, our results do not support a role for SIMs or SUMOylation in the antiviral properties of TRIM5α.

Citing Articles

The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis.

Blondel-Tepaz E, Leverve M, Sokrat B, Paradis J, Kosic M, Saha K Oncogene. 2021; 40(12):2243-2257.

PMID: 33649538 DOI: 10.1038/s41388-021-01704-w.


Ubiquitination and SUMOylation in HIV Infection: Friends and Foes.

Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R Curr Issues Mol Biol. 2019; 35:159-194.

PMID: 31422939 PMC: 6987006. DOI: 10.21775/cimb.035.159.


TRIM5α Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression.

Huang H, Chen C, Wang W, Hsu S, Tsai H, Liu S Front Microbiol. 2017; 7:2129.

PMID: 28105027 PMC: 5214253. DOI: 10.3389/fmicb.2016.02129.


A putative SUMO interacting motif in the B30.2/SPRY domain of rhesus macaque TRIM5α important for NF-κB/AP-1 signaling and HIV-1 restriction.

Nepveu-Traversy M, Demogines A, Fricke T, Plourde M, Riopel K, Veillette M Heliyon. 2016; 2(1):e00056.

PMID: 27441239 PMC: 4945854. DOI: 10.1016/j.heliyon.2015.e00056.


Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells.

Portilho D, Fernandez J, Ringeard M, Machado A, Boulay A, Mayer M Cell Rep. 2016; 14(2):355-69.

PMID: 26748714 PMC: 4713866. DOI: 10.1016/j.celrep.2015.12.039.


References
1.
Yueh A, Leung J, Bhattacharyya S, Perrone L, de Los Santos K, Pu S . Interaction of moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection. J Virol. 2005; 80(1):342-52. PMC: 1317516. DOI: 10.1128/JVI.80.1.342-352.2006. View

2.
Kim J, Tipper C, Sodroski J . Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J Virol. 2011; 85(16):8116-32. PMC: 3147946. DOI: 10.1128/JVI.00341-11. View

3.
Ohkura S, Yap M, Sheldon T, Stoye J . All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol. 2006; 80(17):8554-65. PMC: 1563890. DOI: 10.1128/JVI.00688-06. View

4.
Kuersten S, Ohno M, Mattaj I . Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol. 2001; 11(12):497-503. DOI: 10.1016/s0962-8924(01)02144-4. View

5.
Langelier C, Sandrin V, Eckert D, Christensen D, Chandrasekaran V, Alam S . Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J Virol. 2008; 82(23):11682-94. PMC: 2583683. DOI: 10.1128/JVI.01562-08. View