» Articles » PMID: 23069807

Differential Response of Macrophages to Core-shell Fe3O4@Au Nanoparticles and Nanostars

Overview
Journal Nanoscale
Specialty Biotechnology
Date 2012 Oct 17
PMID 23069807
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Murine RAW 264.7 cells were exposed to spheroidal core-shell Fe(3)O(4)@Au nanoparticles (SCS-NPs, ca. 34 nm) or nanostars (NSTs, ca. 100 nm) in the presence of bovine serum albumin, with variable effects observed after macrophagocytosis. Uptake of SCS-NPs caused macrophages to adopt a rounded, amoeboid form, accompanied by an increase in surface detachment. In contrast, the uptake of multibranched NSTs did not induce gross changes in macrophage shape or adhesion, but correlated instead with cell enlargement and signatures of macrophage activation such as TNF-α and ROS. MTT assays indicate a low cytotoxic response to either SCS-NPs or NSTs despite differences in macrophage behavior. These observations show that differences in NP size and shape are sufficient to produce diverse responses in macrophages following uptake.

Citing Articles

Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations.

Shah A, Dobrovolskaia M Nanomedicine. 2018; 14(3):977-990.

PMID: 29409836 PMC: 5899012. DOI: 10.1016/j.nano.2018.01.014.


Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting.

Rattan R, Bhattacharjee S, Zong H, Swain C, Siddiqui M, Visovatti S Bioorg Med Chem. 2017; 25(16):4487-4496.

PMID: 28705434 PMC: 5653216. DOI: 10.1016/j.bmc.2017.06.040.


Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical.

Vogel C, Charrier J, Wu D, McFall A, Li W, Abid A Free Radic Res. 2016; 50(11):1153-1164.

PMID: 27558512 PMC: 5533177. DOI: 10.3109/10715762.2016.1152360.


Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M Int J Nanomedicine. 2016; 11:3331-46.

PMID: 27524893 PMC: 4965228. DOI: 10.2147/IJN.S106912.


Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity.

Calisi A, Grimaldi A, Leomanni A, Lionetto M, Dondero F, Schettino T Ecotoxicology. 2016; 25(4):677-87.

PMID: 26892788 DOI: 10.1007/s10646-016-1626-x.


References
1.
Wang H, Huff T, Zweifel D, He W, Low P, Wei A . In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A. 2005; 102(44):15752-6. PMC: 1276057. DOI: 10.1073/pnas.0504892102. View

2.
Pitsillides C, Joe E, Wei X, Anderson R, Lin C . Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003; 84(6):4023-32. PMC: 1302982. DOI: 10.1016/S0006-3495(03)75128-5. View

3.
Gauss K, Nelson-Overton L, Siemsen D, Gao Y, DeLeo F, Quinn M . Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J Leukoc Biol. 2007; 82(3):729-41. DOI: 10.1189/jlb.1206735. View

4.
Dobrovolskaia M, McNeil S . Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2008; 2(8):469-78. DOI: 10.1038/nnano.2007.223. View

5.
Mosser D, Edwards J . Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008; 8(12):958-69. PMC: 2724991. DOI: 10.1038/nri2448. View