» Articles » PMID: 23062351

N-Ras Forms Dimers at POPC Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2012 Oct 16
PMID 23062351
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

Ras is a central regulator of cellular signaling pathways. It is mutated in 20-30% of human tumors. To perform its function, Ras has to be bound to a membrane by a posttranslationally attached lipid anchor. Surprisingly, we identified here dimerization of membrane anchored Ras by combining attenuated total reflectance Fourier transform infrared spectroscopy, biomolecular simulations, and Förster resonance energy transfer experiments. By analyzing x-ray structural models and molecular-dynamics simulations, we propose a dimerization interface between α-helices 4 and 5 and the loop between β2 and β3. This seems to explain why the residues D47, E49, R135, R161, and R164 of this interface are influencing Ras signaling in cellular physiological experiments, although they are not positioned in the catalytic site. Dimerization could catalyze nanoclustering, which is well accepted for membrane-bound Ras. The interface could provide a new target for a seemingly novel type of small molecule interfering with signal transduction in oncogenic Ras mutants.

Citing Articles

Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1.

Ali A, Li L, Courtney M, Pentikainen O, Postila P Brief Bioinform. 2024; 25(6).

PMID: 39311700 PMC: 11418247. DOI: 10.1093/bib/bbae458.


Capturing RAS oligomerization on a membrane.

Yun S, Scott E, Chang J, Bahramimoghaddam H, Lynn M, Lantz C Proc Natl Acad Sci U S A. 2024; 121(34):e2405986121.

PMID: 39145928 PMC: 11348296. DOI: 10.1073/pnas.2405986121.


Membrane-Driven Dimerization of the Peripheral Membrane Protein KRAS: Implications for Downstream Signaling.

Lee K Int J Mol Sci. 2024; 25(5).

PMID: 38473778 PMC: 10931714. DOI: 10.3390/ijms25052530.


Crystal Packing Reveals a Potential Autoinhibited KRAS Dimer Interface and a Strategy for Small-Molecule Inhibition of RAS Signaling.

Brenner R, Landgraf A, Bum-Erdene K, Gonzalez-Gutierrez G, Meroueh S Biochemistry. 2023; 62(22):3206-3213.

PMID: 37938120 PMC: 10904212. DOI: 10.1021/acs.biochem.3c00378.


Targeting Ras with protein engineering.

Tomazini A, Shifman J Oncotarget. 2023; 14:672-687.

PMID: 37395750 PMC: 10317039. DOI: 10.18632/oncotarget.28469.


References
1.
van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A, Berendsen H . GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26(16):1701-18. DOI: 10.1002/jcc.20291. View

2.
Goormaghtigh E, Cabiaux V, Ruysschaert J . Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell Biochem. 1994; 23:363-403. DOI: 10.1007/978-1-4615-1863-1_9. View

3.
Stieglitz B, Bee C, Schwarz D, Yildiz O, Moshnikova A, Khokhlatchev A . Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II. EMBO J. 2008; 27(14):1995-2005. PMC: 2486280. DOI: 10.1038/emboj.2008.125. View

4.
Woolf P, Linderman J . Self organization of membrane proteins via dimerization. Biophys Chem. 2003; 104(1):217-27. DOI: 10.1016/s0301-4622(02)00369-1. View

5.
Marsh D, Muller M, Schmitt F . Orientation of the infrared transition moments for an alpha-helix. Biophys J. 2000; 78(5):2499-510. PMC: 1300840. DOI: 10.1016/S0006-3495(00)76795-6. View