» Articles » PMID: 23019332

A Universal Scaffold for Synthesis of the Fe(CN)2(CO) Moiety of [NiFe] Hydrogenase

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Sep 29
PMID 23019332
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN(-)) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN(-) ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)(2)(CO) entity of [NiFe] hydrogenase.

Citing Articles

ATP-Triggered Fe(CN)CO Synthon Transfer from the Maturase HypCD to the Active Site of Apo-[NiFe]-Hydrogenase.

Kwiatkowski A, Caserta G, Schulz A, Frielingsdorf S, Pelmenschikov V, Weisser K J Am Chem Soc. 2024; 146(45):30976-30989.

PMID: 39491524 PMC: 11565642. DOI: 10.1021/jacs.4c09791.


The energy metabolism of in different trophic conditions.

Jahn M, Crang N, Gynna A, Kabova D, Frielingsdorf S, Lenz O Appl Environ Microbiol. 2024; 90(10):e0074824.

PMID: 39320125 PMC: 11540253. DOI: 10.1128/aem.00748-24.


Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli.

Haase A, Arlt C, Sinz A, Sawers R Sci Rep. 2024; 14(1):3026.

PMID: 38321125 PMC: 10847431. DOI: 10.1038/s41598-024-53745-2.


Stepwise assembly of the active site of [NiFe]-hydrogenase.

Caserta G, Hartmann S, Van Stappen C, Karafoulidi-Retsou C, Lorent C, Yelin S Nat Chem Biol. 2023; 19(4):498-506.

PMID: 36702959 DOI: 10.1038/s41589-022-01226-w.


A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli.

Haase A, Sawers R FEBS Open Bio. 2023; 13(2):341-351.

PMID: 36602404 PMC: 9900092. DOI: 10.1002/2211-5463.13546.


References
1.
Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K . Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Mol Cell. 2007; 27(1):29-40. DOI: 10.1016/j.molcel.2007.05.039. View

2.
Forzi L, Hellwig P, Thauer R, Sawers R . The CO and CN(-) ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett. 2007; 581(17):3317-21. DOI: 10.1016/j.febslet.2007.06.028. View

3.
Schwarze A, Kopczak M, Rogner M, Lenz O . Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase. Appl Environ Microbiol. 2010; 76(8):2641-51. PMC: 2849213. DOI: 10.1128/AEM.02700-09. View

4.
Dernedde J, Eitinger M, Friedrich B . Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol. 1993; 159(6):545-53. DOI: 10.1007/BF00249034. View

5.
Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L . Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure. 2011; 19(12):1773-83. DOI: 10.1016/j.str.2011.09.023. View