Probabilities for Large Events in Driven Threshold Systems
Overview
Physiology
Public Health
Authors
Affiliations
Many driven threshold systems display a spectrum of avalanche event sizes, often characterized by power-law scaling. An important problem is to compute probabilities of the largest events ("Black Swans"). We develop a data-driven approach to the problem by transforming to the event index frame, and relating this to Shannon information. For earthquakes, we find the 12-month probability for magnitude m>6 earthquakes in California increases from about 30% after the last event, to 40%-50% prior to the next one.
Varotsos P, Sarlis N, Nagao T Sci Rep. 2024; 14(1):30828.
PMID: 39730642 PMC: 11680913. DOI: 10.1038/s41598-024-81547-z.
Ramirez-Rojas A, Flores-Marquez E Entropy (Basel). 2022; 24(4).
PMID: 35455143 PMC: 9028209. DOI: 10.3390/e24040480.
Perez-Oregon J, Angulo-Brown F, Sarlis N Entropy (Basel). 2020; 22(11).
PMID: 33286996 PMC: 7712535. DOI: 10.3390/e22111228.
Flores-Marquez E, Ramirez-Rojas A, Perez-Oregon J, Sarlis N, Skordas E, Varotsos P Entropy (Basel). 2020; 22(7).
PMID: 33286502 PMC: 7517273. DOI: 10.3390/e22070730.
Identifying the Occurrence Time of the Deadly Mexico M8.2 Earthquake on 7 September 2017.
Sarlis N, Skordas E, Varotsos P, Ramirez-Rojas A, Flores-Marquez E Entropy (Basel). 2020; 21(3).
PMID: 33267016 PMC: 7514782. DOI: 10.3390/e21030301.