» Articles » PMID: 22997228

Dual Suppression of Hemangiogenesis and Lymphangiogenesis by Splice-shifting Morpholinos Targeting Vascular Endothelial Growth Factor Receptor 2 (KDR)

Overview
Journal FASEB J
Specialties Biology
Physiology
Date 2012 Sep 22
PMID 22997228
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5' splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.

Citing Articles

Targeted splicing therapy: new strategies for colorectal cancer.

Zheng Y, Zhong G, He C, Li M Front Oncol. 2023; 13:1222932.

PMID: 37664052 PMC: 10470845. DOI: 10.3389/fonc.2023.1222932.


Therapeutic Targeting of RNA Splicing in Cancer.

Bonner E, Lee S Genes (Basel). 2023; 14(7).

PMID: 37510283 PMC: 10379351. DOI: 10.3390/genes14071378.


Biomaterials for Modulating Lymphatic Function in Immunoengineering.

Sestito L, Thomas S ACS Pharmacol Transl Sci. 2020; 2(5):293-310.

PMID: 32259064 PMC: 7088982. DOI: 10.1021/acsptsci.9b00047.


RBPs Play Important Roles in Vascular Endothelial Dysfunction Under Diabetic Conditions.

Yang C, Kelaini S, Caines R, Margariti A Front Physiol. 2018; 9:1310.

PMID: 30294283 PMC: 6158626. DOI: 10.3389/fphys.2018.01310.


Effect of Anti-C5a Therapy in a Murine Model of Early/Intermediate Dry Age-Related Macular Degeneration.

Toomey C, Landowski M, Klingeborn M, Kelly U, Deans J, Dong H Invest Ophthalmol Vis Sci. 2018; 59(2):662-673.

PMID: 29392311 PMC: 5795897. DOI: 10.1167/iovs.17-23134.


References
1.
Weis S, Cui J, Barnes L, Cheresh D . Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004; 167(2):223-9. PMC: 2172541. DOI: 10.1083/jcb.200408130. View

2.
Anderson J, Jones B, Yang J, Shaw M, Watt C, Koshevoy P . A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol. 2009; 7(3):e1000074. PMC: 2661966. DOI: 10.1371/journal.pbio.1000074. View

3.
An J, Gharami K, Liao G, Woo N, Lau A, Vanevski F . Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 2008; 134(1):175-87. PMC: 2527207. DOI: 10.1016/j.cell.2008.05.045. View

4.
Ferrara N . Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010; 21(5):687-90. PMC: 2828956. DOI: 10.1091/mbc.e09-07-0590. View

5.
Uehara H, Luo L, Simonis J, Singh N, Taylor E, Ambati B . Anti-SPARC oligopeptide inhibits laser-induced CNV in mice. Vision Res. 2009; 50(7):674-9. PMC: 2840068. DOI: 10.1016/j.visres.2009.12.003. View