» Articles » PMID: 22987724

Towards a New Tuberculosis Drug: Pyridomycin - Nature's Isoniazid

Overview
Journal EMBO Mol Med
Specialty Molecular Biology
Date 2012 Sep 19
PMID 22987724
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

Tuberculosis, a global threat to public health, is becoming untreatable due to widespread drug resistance to frontline drugs such as the InhA-inhibitor isoniazid. Historically, by inhibiting highly vulnerable targets, natural products have been an important source of antibiotics including potent anti-tuberculosis agents. Here, we describe pyridomycin, a compound produced by Dactylosporangium fulvum with specific cidal activity against mycobacteria. By selecting pyridomycin-resistant mutants of Mycobacterium tuberculosis, whole-genome sequencing and genetic validation, we identified the NADH-dependent enoyl- (Acyl-Carrier-Protein) reductase InhA as the principal target and demonstrate that pyridomycin inhibits mycolic acid synthesis in M. tuberculosis. Furthermore, biochemical and structural studies show that pyridomycin inhibits InhA directly as a competitive inhibitor of the NADH-binding site, thereby identifying a new, druggable pocket in InhA. Importantly, the most frequently encountered isoniazid-resistant clinical isolates remain fully susceptible to pyridomycin, thus opening new avenues for drug development. →See accompanying article http://dx.doi.org/10.1002/emmm.201201811.

Citing Articles

Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research.

Sussmuth R, Sussmuth R, Kulike-Koczula M, Kulike-Koczula M, Gao P, Kosol S Angew Chem Int Ed Engl. 2024; 64(10):e202414325.

PMID: 39611429 PMC: 11878372. DOI: 10.1002/anie.202414325.


Imidazoquinoline Derivatives as Potential Inhibitors of InhA Enzyme and .

Hoffmann P, Azema-Despeyroux J, Goncalves F, Stamilla A, Saffon-Merceron N, Rodriguez F Molecules. 2024; 29(13).

PMID: 38999028 PMC: 11243711. DOI: 10.3390/molecules29133076.


The dark side of drug repurposing. From clinical trial challenges to antimicrobial resistance: analysis based on three major fields.

Natsheh I, Alsaleh M, Alkhawaldeh A, Albadawi D, Darwish M, Shammout M Drug Target Insights. 2024; 18:8-19.

PMID: 38751378 PMC: 11094707. DOI: 10.33393/dti.2024.3019.


Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps.

Duffey M, Jumde R, da Costa R, Ropponen H, Blasco B, Piddock L ACS Infect Dis. 2024; 10(5):1458-1482.

PMID: 38661541 PMC: 11091901. DOI: 10.1021/acsinfecdis.4c00091.


Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria.

Nyambo K, Tapfuma K, Adu-Amankwaah F, Julius L, Baatjies L, Niang I Sci Rep. 2024; 14(1):6794.

PMID: 38514663 PMC: 10957976. DOI: 10.1038/s41598-024-57124-9.


References
1.
Palomino J, Martin A, Camacho M, Guerra H, Swings J, Portaels F . Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002; 46(8):2720-2. PMC: 127336. DOI: 10.1128/AAC.46.8.2720-2722.2002. View

2.
Lamichhane G . Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med. 2010; 17(1):25-33. DOI: 10.1016/j.molmed.2010.10.004. View

3.
YAGISHITA K . Studies on the pyridomycin production. IV. Metabolic studies on Streptomyces pyridomyceticus. J Antibiot (Tokyo). 1957; 10(1):15-20. View

4.
Quemard A, Sacchettini J, Dessen A, Vilcheze C, Bittman R, Jacobs Jr W . Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995; 34(26):8235-41. DOI: 10.1021/bi00026a004. View

5.
Baldock C, Rafferty J, Sedelnikova S, Baker P, Stuitje A, Slabas A . A mechanism of drug action revealed by structural studies of enoyl reductase. Science. 1996; 274(5295):2107-10. DOI: 10.1126/science.274.5295.2107. View