Farhadi A, Jennings S, Strickland E, Carney L
J Acoust Soc Am. 2023; 154(6):3644-3659.
PMID: 38051523
PMC: 10836963.
DOI: 10.1121/10.0022578.
Salloom W, Bharadwaj H, Strickland E
J Acoust Soc Am. 2023; 153(4):2482.
PMID: 37092950
PMC: 10257528.
DOI: 10.1121/10.0017925.
Siddiqui H, Saleem A, Raza M, Zafar K, Russo R, Dudley S
Sensors (Basel). 2022; 22(20).
PMID: 36298382
PMC: 9610183.
DOI: 10.3390/s22208031.
Kates J, Arehart K
Hear Res. 2022; 426:108608.
PMID: 36137862
PMC: 10833438.
DOI: 10.1016/j.heares.2022.108608.
Zedan A, Jurgens T, Williges B, Hulsmeier D, Kollmeier B
Hear Res. 2022; 420:108507.
PMID: 35484022
PMC: 9188268.
DOI: 10.1016/j.heares.2022.108507.
The effect of broadband elicitor laterality on psychoacoustic gain reduction across signal frequency.
Salloom W, Strickland E
J Acoust Soc Am. 2021; 150(4):2817.
PMID: 34717476
PMC: 8520488.
DOI: 10.1121/10.0006662.
Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners.
Hernandez-Perez H, Mikiel-Hunter J, McAlpine D, Dhar S, Boothalingam S, Monaghan J
PLoS Biol. 2021; 19(10):e3001439.
PMID: 34669696
PMC: 8559948.
DOI: 10.1371/journal.pbio.3001439.
Otoacoustic Emissions Evoked by the Time-Varying Harmonic Structure of Speech.
Saiz-Alia M, Miller P, Reichenbach T
eNeuro. 2021; 8(2).
PMID: 33632811
PMC: 8046024.
DOI: 10.1523/ENEURO.0428-20.2021.
Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception.
Haro S, J Smalt C, Ciccarelli G, Quatieri T
Front Neurosci. 2021; 14:588448.
PMID: 33384579
PMC: 7770113.
DOI: 10.3389/fnins.2020.588448.
Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits.
Saiz-Alia M, Forte A, Reichenbach T
Sci Rep. 2019; 9(1):14131.
PMID: 31575950
PMC: 6773727.
DOI: 10.1038/s41598-019-50773-1.
Neural Encoding of Amplitude Modulations in the Human Efferent System.
Mishra S, Biswal M
J Assoc Res Otolaryngol. 2019; 20(4):383-393.
PMID: 31037561
PMC: 6646511.
DOI: 10.1007/s10162-019-00720-8.
Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance.
Lopez-Poveda E
Front Neurol. 2018; 9:197.
PMID: 29632514
PMC: 5879449.
DOI: 10.3389/fneur.2018.00197.
Olivocochlear Efferent Activity Is Associated With the Slope of the Psychometric Function of Speech Recognition in Noise.
Mertes I, Wilbanks E, Leek M
Ear Hear. 2017; 39(3):583-593.
PMID: 29135685
PMC: 5920700.
DOI: 10.1097/AUD.0000000000000514.
Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm.
Langner F, Jurgens T
Trends Hear. 2016; 20.
PMID: 27604785
PMC: 5017570.
DOI: 10.1177/2331216516659632.
A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.
Lopez-Poveda E, Eustaquio-Martin A, Stohl J, Wolford R, Schatzer R, Wilson B
Ear Hear. 2016; 37(3):e138-48.
PMID: 26862711
PMC: 4894785.
DOI: 10.1097/AUD.0000000000000273.
Recognizing the message and the messenger: biomimetic spectral analysis for robust speech and speaker recognition.
Nemala S, Patil K, Elhilali M
Int J Speech Technol. 2015; 16(3):313-322.
PMID: 26412979
PMC: 4579853.
DOI: 10.1007/s10772-012-9184-y.
Modeling auditory coding: from sound to spikes.
Rudnicki M, Schoppe O, Isik M, Volk F, Hemmert W
Cell Tissue Res. 2015; 361(1):159-75.
PMID: 26048258
PMC: 4487355.
DOI: 10.1007/s00441-015-2202-z.
Loudness Context Effects in Normal-Hearing Listeners and Cochlear-Implant Users.
Wang N, Kreft H, Oxenham A
J Assoc Res Otolaryngol. 2015; 16(4):535-45.
PMID: 26040213
PMC: 4488167.
DOI: 10.1007/s10162-015-0523-y.
Quantitative analysis linking inner hair cell voltage changes and postsynaptic conductance change: a modelling study.
Prokopiou A, Drakakis E
Biomed Res Int. 2015; 2015:626971.
PMID: 25654117
PMC: 4299359.
DOI: 10.1155/2015/626971.
Effect of human auditory efferent feedback on cochlear gain and compression.
Yasin I, Drga V, Plack C
J Neurosci. 2014; 34(46):15319-26.
PMID: 25392499
PMC: 4228134.
DOI: 10.1523/JNEUROSCI.1043-14.2014.