» Articles » PMID: 22962057

Understanding Cullin-RING E3 Biology Through Proteomics-based Substrate Identification

Overview
Date 2012 Sep 11
PMID 22962057
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field.

Citing Articles

TurboID-based proteomic profiling reveals proxitome of ASK1 and CUL1 of the SCF ubiquitin ligase in plants.

Sun F, Hamada N, Montes C, Li Y, Meier N, Walley J New Phytol. 2024; 244(6):2127-2136.

PMID: 39081016 PMC: 11579432. DOI: 10.1111/nph.20014.


The differentially expressed gene signatures of the Cullin 3-RING ubiquitin ligases in neuroendocrine cancer.

Park J, Kim D, Kim J, Jo J, Kim Y, Jung D Biochem Biophys Res Commun. 2022; 636(Pt 2):71-78.

PMID: 36368157 PMC: 9671844. DOI: 10.1016/j.bbrc.2022.10.108.


Probing protein ubiquitination in live cells.

Qin W, Steinek C, Kolobynina K, Forne I, Imhof A, Cardoso M Nucleic Acids Res. 2022; 50(21):e125.

PMID: 36189882 PMC: 9757074. DOI: 10.1093/nar/gkac805.


USP7 Promotes deubiquitination and stabilization of MyD88 to enhance immune responses.

Zhang N, Wang F, Zhang G, Zhang Q, Liu Y, Wang Q Front Immunol. 2022; 13:900243.

PMID: 36032091 PMC: 9412818. DOI: 10.3389/fimmu.2022.900243.


Dot6/Tod6 degradation fine-tunes the repression of ribosome biogenesis under nutrient-limited conditions.

Kusama K, Suzuki Y, Kurita E, Kawarasaki T, Obara K, Okumura F iScience. 2022; 25(3):103986.

PMID: 35310337 PMC: 8924686. DOI: 10.1016/j.isci.2022.103986.


References
1.
Jin L, Pahuja K, Wickliffe K, Gorur A, Baumgartel C, Schekman R . Ubiquitin-dependent regulation of COPII coat size and function. Nature. 2012; 482(7386):495-500. PMC: 3292188. DOI: 10.1038/nature10822. View

2.
Liao H, Liu X, Blank J, Bouck D, Bernard H, Garcia K . Quantitative proteomic analysis of cellular protein modulation upon inhibition of the NEDD8-activating enzyme by MLN4924. Mol Cell Proteomics. 2011; 10(11):M111.009183. PMC: 3226404. DOI: 10.1074/mcp.M111.009183. View

3.
Winston J, Strack P, Chu C, Elledge S, Harper J . The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999; 13(3):270-83. PMC: 316433. DOI: 10.1101/gad.13.3.270. View

4.
Sarikas A, Hartmann T, Pan Z . The cullin protein family. Genome Biol. 2011; 12(4):220. PMC: 3218854. DOI: 10.1186/gb-2011-12-4-220. View

5.
Soucy T, Smith P, Milhollen M, Berger A, Gavin J, Adhikari S . An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009; 458(7239):732-6. DOI: 10.1038/nature07884. View