» Articles » PMID: 22961543

Neurological Perspectives on Voltage-gated Sodium Channels

Overview
Journal Brain
Specialty Neurology
Date 2012 Sep 11
PMID 22961543
Citations 144
Authors
Affiliations
Soon will be listed here.
Abstract

The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.

Citing Articles

Silicon-Bridged Bis(12-crown-4) Ethers as Ionophores for Sodium Ion-Selective Electrodes.

Katsuta S, Ino Y, Wakabayashi H Molecules. 2025; 30(4).

PMID: 40005234 PMC: 11858547. DOI: 10.3390/molecules30040925.


Functionally important binding site for a volatile anesthetic in a voltage-gated sodium channel identified by X-ray crystallography.

Hollingworth D, Herold K, Kelly G, Mykhaylyk V, Xiang J, Zhang D bioRxiv. 2024; .

PMID: 39574657 PMC: 11580951. DOI: 10.1101/2024.11.04.621342.


Therapeutic targeting of voltage-gated sodium channel Na1.7 for cancer metastasis.

Pukkanasut P, Jaskula-Sztul R, Gomora J, Velu S Front Pharmacol. 2024; 15:1416705.

PMID: 39045054 PMC: 11263763. DOI: 10.3389/fphar.2024.1416705.


Neuropathic Pain Secondary to Multiple Sclerosis: A Narrative Review.

McBenedict B, Goh K, Yau R, Elamin S, Yusuf W, Verly G Cureus. 2024; 16(6):e61587.

PMID: 38962595 PMC: 11221503. DOI: 10.7759/cureus.61587.


Functional effects of drugs and toxins interacting with Na1.4.

Zou X, Zhang Z, Lu H, Zhao W, Pan L, Chen Y Front Pharmacol. 2024; 15:1378315.

PMID: 38725668 PMC: 11079311. DOI: 10.3389/fphar.2024.1378315.


References
1.
Carter A . The importance of voltage-dependent sodium channels in cerebral ischaemia. Amino Acids. 1999; 14(1-3):159-69. DOI: 10.1007/BF01345257. View

2.
Fertleman C, Baker M, Parker K, Moffatt S, Elmslie F, Abrahamsen B . SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006; 52(5):767-74. DOI: 10.1016/j.neuron.2006.10.006. View

3.
Alabi A, Bahamonde M, Jung H, Kim J, Swartz K . Portability of paddle motif function and pharmacology in voltage sensors. Nature. 2007; 450(7168):370-5. PMC: 2709416. DOI: 10.1038/nature06266. View

4.
Brittain J, Duarte D, Wilson S, Zhu W, Ballard C, Johnson P . Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca²⁺ channel complex. Nat Med. 2011; 17(7):822-9. PMC: 3219927. DOI: 10.1038/nm.2345. View

5.
Brackenbury W, Calhoun J, Chen C, Miyazaki H, Nukina N, Oyama F . Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci U S A. 2010; 107(5):2283-8. PMC: 2836661. DOI: 10.1073/pnas.0909434107. View