» Articles » PMID: 22952464

Critical Fluctuations in Cortical Models Near Instability

Overview
Journal Front Physiol
Date 2012 Sep 7
PMID 22952464
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.

Citing Articles

Network Mechanisms Underlying the Regional Diversity of Variance and Time Scales of the Brain's Spontaneous Activity Fluctuations.

Ponce-Alvarez A J Neurosci. 2025; 45(10).

PMID: 39843234 PMC: 11884397. DOI: 10.1523/JNEUROSCI.1699-24.2024.


Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model.

Kulik S, Douw L, van Dellen E, Steenwijk M, Geurts J, Stam C Netw Neurosci. 2023; 7(3):950-965.

PMID: 37781149 PMC: 10473283. DOI: 10.1162/netn_a_00303.


Phase synchronization and measure of criticality in a network of neural mass models.

Kazemi S, Jamali Y Sci Rep. 2022; 12(1):1319.

PMID: 35079038 PMC: 8789819. DOI: 10.1038/s41598-022-05285-w.


Inference of brain networks with approximate Bayesian computation - assessing face validity with an example application in Parkinsonism.

West T, Berthouze L, Farmer S, Cagnan H, Litvak V Neuroimage. 2021; 236:118020.

PMID: 33839264 PMC: 8270890. DOI: 10.1016/j.neuroimage.2021.118020.


Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex.

Hagemann A, Wilting J, Samimizad B, Mormann F, Priesemann V PLoS Comput Biol. 2021; 17(3):e1008773.

PMID: 33684101 PMC: 7971851. DOI: 10.1371/journal.pcbi.1008773.


References
1.
Freyer F, Roberts J, Ritter P, Breakspear M . A canonical model of multistability and scale-invariance in biological systems. PLoS Comput Biol. 2012; 8(8):e1002634. PMC: 3415415. DOI: 10.1371/journal.pcbi.1002634. View

2.
Rowat P, Greenwood P . Identification and continuity of the distributions of burst-length and interspike intervals in the stochastic Morris-Lecar neuron. Neural Comput. 2011; 23(12):3094-124. DOI: 10.1162/NECO_a_00209. View

3.
Wendling F, Bellanger J, Bartolomei F, Chauvel P . Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern. 2000; 83(4):367-78. DOI: 10.1007/s004220000160. View

4.
Linkenkaer-Hansen K, Nikulin V, Palva J, Kaila K, Ilmoniemi R . Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. Eur J Neurosci. 2004; 19(1):203-11. DOI: 10.1111/j.1460-9568.2004.03116.x. View

5.
Friston K, Harrison L, Penny W . Dynamic causal modelling. Neuroimage. 2003; 19(4):1273-302. DOI: 10.1016/s1053-8119(03)00202-7. View