» Articles » PMID: 22941646

Misacylation of TRNA with Methionine in Saccharomyces Cerevisiae

Overview
Specialty Biochemistry
Date 2012 Sep 4
PMID 22941646
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p-MetRS-GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.

Citing Articles

Nanopore sequencing of intact aminoacylated tRNAs.

White L, Radakovic A, Sajek M, Dobson K, Riemondy K, Del Pozo S bioRxiv. 2024; .

PMID: 39605391 PMC: 11601438. DOI: 10.1101/2024.11.18.623114.


Mechanisms and Delivery of tRNA Therapeutics.

Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm S, Heinemann I Chem Rev. 2024; 124(12):7976-8008.

PMID: 38801719 PMC: 11212642. DOI: 10.1021/acs.chemrev.4c00142.


An evolutionarily conserved phosphoserine-arginine salt bridge in the interface between ribosomal proteins uS4 and uS5 regulates translational accuracy in Saccharomyces cerevisiae.

Joshi K, Luisi B, Wunderlin G, Saleh S, Lilly A, Okusolubo T Nucleic Acids Res. 2024; 52(7):3989-4001.

PMID: 38340338 PMC: 11040005. DOI: 10.1093/nar/gkae053.


Translation regulation in response to stress.

Williams T, Rousseau A FEBS J. 2024; 291(23):5102-5122.

PMID: 38308808 PMC: 11616006. DOI: 10.1111/febs.17076.


Anticodon sequence determines the impact of mistranslating tRNA variants.

Cozma E, Rao M, Dusick M, Genereaux J, Rodriguez-Mias R, Villen J RNA Biol. 2023; 20(1):791-804.

PMID: 37776539 PMC: 10543346. DOI: 10.1080/15476286.2023.2257471.


References
1.
Netzer N, Goodenbour J, David A, Dittmar K, Jones R, Schneider J . Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature. 2009; 462(7272):522-6. PMC: 2785853. DOI: 10.1038/nature08576. View

2.
Finkel T, Holbrook N . Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408(6809):239-47. DOI: 10.1038/35041687. View

3.
Jakubowski W, Bilinski T, Bartosz G . Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 2000; 28(5):659-64. DOI: 10.1016/s0891-5849(99)00266-x. View

4.
Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M . The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996; 15(19):5437-48. PMC: 452286. View

5.
Staschke K, Dey S, Zaborske J, Palam L, McClintick J, Pan T . Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem. 2010; 285(22):16893-911. PMC: 2878067. DOI: 10.1074/jbc.M110.121947. View