» Articles » PMID: 22906987

Liver Inflammation in a Mouse Model of Th1 Hepatitis Despite the Absence of Invariant NKT Cells or the Th1 Chemokine Receptors CXCR3 and CCR5

Overview
Journal Lab Invest
Specialty Pathology
Date 2012 Aug 22
PMID 22906987
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

The specific mechanisms that mediate CD4(+) T-cell-mediated liver injury have not been fully elucidated. CD4(+) invariant natural killer T (iNKT) cells are required for liver damage in some mouse models of hepatitis, while the chemokine receptors CXCR3 and CCR5 are considered dominant Th1 chemokine receptors involved in Th1 trafficking in inflammatory conditions. BALB/c-Tgfb1(-/-) mice spontaneously develop Th1 hepatitis. Here, we directly test the hypotheses that iNKT cells or the Th1-cell chemokine receptors CXCR3 and CCR5 are required for development of liver disease in Tgfb1(-/-) mice. Tgfb1(-/-) mouse livers exhibited significant increases in iNKT cells and in ligands for CXCR3 or CCR5. Tgfb1(-/-) mice were rendered deficient in iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5, by cross-breeding with appropriate knockout mice. Tgfb1(-/-) mice developed severe liver injury, even in the absence of functional CD1d/iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5. Liver CD4(+) T cells accumulated to high numbers, and spleen CD4(+) T-cell numbers declined, regardless of the functionality of the CXCR3/CCR5 response pathways. Similarly, dendritic cells and macrophages accumulated in Tgfb1(-/-) livers even when CXCR3 and CCR5 were knocked out. Th1-associated cytokines (IFN-γ, TNF-α, IL-2) and chemokines (CXCL9, CXCL10) were strongly overexpressed in Tgfb1(-/-) mice despite knockouts in CD1d, CXCR3, or CCR5. These studies indicate that the cellular and biochemical basis for CD4(+) T-cell-mediated injury in liver can be complex, with myriad pathways potentially involved.

Citing Articles

Identification of Targets for Subsequent Treatment of Crohn's Disease Patients After Failure of Anti-TNF Therapy.

Yao Y, Yang L, Zhang Z, Wang B, Feng B, Liu Z J Inflamm Res. 2023; 16:4617-4631.

PMID: 37868830 PMC: 10590116. DOI: 10.2147/JIR.S422881.


Regulatory T Cell Plasticity and Stability and Autoimmune Diseases.

Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L Clin Rev Allergy Immunol. 2018; 58(1):52-70.

PMID: 30449014 DOI: 10.1007/s12016-018-8721-0.

References
1.
Cheng L, You Q, Yin H, Holt M, Ju C . Involvement of natural killer T cells in halothane-induced liver injury in mice. Biochem Pharmacol. 2010; 80(2):255-61. PMC: 2888538. DOI: 10.1016/j.bcp.2010.03.025. View

2.
Bonder C, Norman M, Swain M, Zbytnuik L, Yamanouchi J, Santamaria P . Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity. 2005; 23(2):153-63. DOI: 10.1016/j.immuni.2005.06.007. View

3.
Rosen H . Hepatitis C pathogenesis: mechanisms of viral clearance and liver injury. Liver Transpl. 2003; 9(11):S35-43. DOI: 10.1053/jlts.2003.50253. View

4.
Cripps J, Wang J, Maria A, Blumenthal I, Gorham J . Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology. 2010; 52(4):1350-9. PMC: 2947571. DOI: 10.1002/hep.23841. View

5.
Gorham J, Lin J, SUNG J, Rudner L, French M . Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol. 2001; 166(10):6413-22. DOI: 10.4049/jimmunol.166.10.6413. View