» Articles » PMID: 22902403

The Oncogene EIF4E Reprograms the Nuclear Pore Complex to Promote MRNA Export and Oncogenic Transformation

Overview
Journal Cell Rep
Publisher Cell Press
Date 2012 Aug 21
PMID 22902403
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

The eukaryotic translation initiation factor eIF4E is a potent oncogene that promotes the nuclear export and translation of specific transcripts. Here, we have discovered that eIF4E alters the cytoplasmic face of the nuclear pore complex (NPC), which leads to enhanced mRNA export of eIF4E target mRNAs. Specifically, eIF4E substantially reduces the major component of the cytoplasmic fibrils of the NPC, RanBP2, relocalizes an associated nucleoporin, Nup214, and elevates RanBP1 and the RNA export factors, Gle1 and DDX19. Genetic or pharmacological inhibition of eIF4E impedes these effects. RanBP2 overexpression specifically inhibits the eIF4E mRNA export pathway and impairs oncogenic transformation by eIF4E. The RanBP2 cytoplasmic fibrils most likely slow the release and/or recycling of critical export factors to the nucleus. eIF4E overcomes this inhibitory mechanism by indirectly reducing levels of RanBP2. More generally, these results suggest that reprogramming the NPC is a means by which oncogenes can harness the proliferative capacity of the cell.

Citing Articles

Posttranscriptional activity of the eukaryotic translation initiation factor eIF4E contributes to HoxA9-driven leukemogenesis.

Zhou F, Culjkovic-Kraljacic B, Bach C, Feng L, Mishima Y, Borden K bioRxiv. 2025; .

PMID: 39990322 PMC: 11844429. DOI: 10.1101/2025.02.10.637540.


The GATA-3-dependent transcriptome and tumor microenvironment are regulated by eIF4E and XPO1 in T-cell lymphomas.

Kady N, Abdelrahman S, Rauf A, Rauf A, Burgess A, Weiss J Blood. 2024; 145(6):597-611.

PMID: 39652777 PMC: 11811937. DOI: 10.1182/blood.2024025484.


Nuclear mRNA export.

Chen S, Jiang Q, Fan J, Cheng H Acta Biochim Biophys Sin (Shanghai). 2024; 57(1):84-100.

PMID: 39243141 PMC: 11802349. DOI: 10.3724/abbs.2024145.


Advances in the understanding of nuclear pore complexes in human diseases.

Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X J Cancer Res Clin Oncol. 2024; 150(7):374.

PMID: 39080077 PMC: 11289042. DOI: 10.1007/s00432-024-05881-5.


Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review.

Schutt J, Brinkert K, Plis A, Schenk T, Brioli A Cancer Drug Resist. 2024; 7:26.

PMID: 39050883 PMC: 11267153. DOI: 10.20517/cdr.2024.39.


References
1.
Wente S, Rout M . The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010; 2(10):a000562. PMC: 2944363. DOI: 10.1101/cshperspect.a000562. View

2.
Strambio-De-Castillia C, Niepel M, Rout M . The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010; 11(7):490-501. DOI: 10.1038/nrm2928. View

3.
Boer J, Van Deursen J, Croes H, Fransen J, Grosveld G . The nucleoporin CAN/Nup214 binds to both the cytoplasmic and the nucleoplasmic sides of the nuclear pore complex in overexpressing cells. Exp Cell Res. 1997; 232(1):182-5. DOI: 10.1006/excr.1997.3502. View

4.
Hutten S, Kehlenbach R . Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol. 2006; 26(18):6772-85. PMC: 1592874. DOI: 10.1128/MCB.00342-06. View

5.
Singh B, Patel H, Roepman R, Schick D, Ferreira P . The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem. 1999; 274(52):37370-8. DOI: 10.1074/jbc.274.52.37370. View