» Articles » PMID: 22902275

Radical SAM Enzymes Involved in the Biosynthesis of Purine-based Natural Products

Overview
Specialties Biochemistry
Biophysics
Date 2012 Aug 21
PMID 22902275
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The radical S-adenosyl-l-methionine (SAM) superfamily is a widely distributed group of iron-sulfur containing proteins that exploit the reactivity of the high energy intermediate, 5'-deoxyadenosyl radical, which is produced by the reductive cleavage of SAM, to carry-out complex radical-mediated transformations. The reactions catalyzed by radical SAM enzymes range from simple group migrations to complex reactions in protein and RNA modification. This review will highlight three radical SAM enzymes that catalyze reactions involving modified guanosines in the biosynthesis pathways of the hypermodified tRNA base wybutosine; secondary metabolites of 7-deazapurine structure, including the hypermodified tRNA base queuosine; and the redox cofactor F(420). This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.

Citing Articles

Changing Fates of the Substrate Radicals Generated in the Active Sites of the B-Dependent Radical SAM Enzymes OxsB and AlsB.

Lee Y, Yeh Y, Fan P, Zhong A, Ruszczycky M, Liu H J Am Chem Soc. 2023; 145(6):3656-3664.

PMID: 36719327 PMC: 9940012. DOI: 10.1021/jacs.2c12953.


If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes.

Jager C, Croft A Biochemistry. 2022; 62(2):241-252.

PMID: 36121716 PMC: 9850924. DOI: 10.1021/acs.biochem.2c00376.


A roadmap for metagenomic enzyme discovery.

Robinson S, Piel J, Sunagawa S Nat Prod Rep. 2021; 38(11):1994-2023.

PMID: 34821235 PMC: 8597712. DOI: 10.1039/d1np00006c.


Comparative Genome Analysis of a Pathogenic Isolate WH13013 from Pig Reveals Potential Genes Involve in Bacterial Adaptions and Pathogenesis.

Yang L, Zhu Y, Peng Z, Ding Y, Jie K, Wang Z Vet Sci. 2020; 7(2).

PMID: 32512708 PMC: 7356198. DOI: 10.3390/vetsci7020074.


Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system.

Yadavalli S, Carey J, Leibman R, Chen A, Stern A, Roggiani M Nat Commun. 2016; 7:12340.

PMID: 27471053 PMC: 4974570. DOI: 10.1038/ncomms12340.


References
1.
Suzuki Y, Noma A, Suzuki T, Ishitani R, Nureki O . Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Nucleic Acids Res. 2009; 37(9):2910-25. PMC: 2685095. DOI: 10.1093/nar/gkp158. View

2.
Goto-Ito S, Ishii R, Ito T, Shibata R, Fusatomi E, Sekine S . Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Acta Crystallogr D Biol Crystallogr. 2007; 63(Pt 10):1059-68. DOI: 10.1107/S0907444907040668. View

3.
McCarty R, Bandarian V . Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. Chem Biol. 2008; 15(8):790-8. PMC: 2603307. DOI: 10.1016/j.chembiol.2008.07.012. View

4.
Li H, Nakanishi K, Grunberger D, Weinstein I . Biosynthetic studies of the Y base in yeast phenylalanine tRNA. Incorporation of guanine. Biochem Biophys Res Commun. 1973; 55(3):818-23. DOI: 10.1016/0006-291x(73)91217-5. View

5.
Blobstein S, Grunberger D, Weinstein I, Nakanishi K . Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid. Biochemistry. 1973; 12(2):188-93. DOI: 10.1021/bi00726a002. View