» Articles » PMID: 22891157

Finding Low-energy Conformations of Lattice Protein Models by Quantum Annealing

Overview
Journal Sci Rep
Specialty Science
Date 2012 Aug 15
PMID 22891157
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy threedimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model. Description of protein-like properties are more accurately described by generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of the advantage of solving classical optimization problems using quantum annealing over its classical analogue (simulated annealing). In this report, we present a benchmark implementation of quantum annealing for lattice protein folding problems (six different experiments up to 81 superconducting quantum bits). This first implementation of a biophysical problem paves the way towards studying optimization problems in biophysics and statistical mechanics using quantum devices.

Citing Articles

Cyclic quantum annealing: searching for deep low-energy states in 5000-qubit spin glass.

Zhang H, Boothby K, Kamenev A Sci Rep. 2024; 14(1):30784.

PMID: 39730542 PMC: 11680906. DOI: 10.1038/s41598-024-80761-z.


A hybrid quantum computing pipeline for real world drug discovery.

Li W, Yin Z, Li X, Ma D, Yi S, Zhang Z Sci Rep. 2024; 14(1):16942.

PMID: 39043787 PMC: 11266395. DOI: 10.1038/s41598-024-67897-8.


A primer for quantum computing and its applications to healthcare and biomedical research.

Durant T, Knight E, Nelson B, Dudgeon S, Lee S, Walliman D J Am Med Inform Assoc. 2024; 31(8):1774-1784.

PMID: 38934288 PMC: 11258415. DOI: 10.1093/jamia/ocae149.


A Perspective on Protein Structure Prediction Using Quantum Computers.

Doga H, Raubenolt B, Cumbo F, Joshi J, DiFilippo F, Qin J J Chem Theory Comput. 2024; 20(9):3359-3378.

PMID: 38703105 PMC: 11099973. DOI: 10.1021/acs.jctc.4c00067.


Enhancing combinatorial optimization with classical and quantum generative models.

Alcazar J, Ghazi Vakili M, Kalayci C, Perdomo-Ortiz A Nat Commun. 2024; 15(1):2761.

PMID: 38553469 PMC: 10980691. DOI: 10.1038/s41467-024-46959-5.


References
1.
Pande V . Simple theory of protein folding kinetics. Phys Rev Lett. 2011; 105(19):198101. DOI: 10.1103/PhysRevLett.105.198101. View

2.
Steffen M, van Dam W, Hogg T, Breyta G, Chuang I . Experimental implementation of an adiabatic quantum optimization algorithm. Phys Rev Lett. 2003; 90(6):067903. DOI: 10.1103/PhysRevLett.90.067903. View

3.
DiCarlo L, Chow J, Gambetta J, Bishop L, Johnson B, Schuster D . Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature. 2009; 460(7252):240-4. DOI: 10.1038/nature08121. View

4.
Li M, Co N, Reddy G, Hu C, Straub J, Thirumalai D . Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys Rev Lett. 2011; 105(21):218101. PMC: 11298782. DOI: 10.1103/PhysRevLett.105.218101. View

5.
Johnson M, Amin M, Gildert S, Lanting T, Hamze F, Dickson N . Quantum annealing with manufactured spins. Nature. 2011; 473(7346):194-8. DOI: 10.1038/nature10012. View