Roman H
Polymers (Basel). 2024; 16(23).
PMID: 39684144
PMC: 11644530.
DOI: 10.3390/polym16233400.
Ghosh K, Huihui J, Phillips M, Haider A
Annu Rev Biophys. 2022; 51:355-376.
PMID: 35119946
PMC: 9190209.
DOI: 10.1146/annurev-biophys-120221-095357.
Rico-Pasto M, Zaltron A, Ritort F
Nanomaterials (Basel). 2021; 11(11).
PMID: 34835787
PMC: 8617895.
DOI: 10.3390/nano11113023.
van Gils J, van Dijk E, Peduzzo A, Hofmann A, Vettore N, Schutzmann M
PLoS Comput Biol. 2020; 16(5):e1007767.
PMID: 32365068
PMC: 7282669.
DOI: 10.1371/journal.pcbi.1007767.
Klein E, Blumenkrantz D, Serohijos A, Shakhnovich E, Choi J, Rodrigues J
mSphere. 2018; 3(1).
PMID: 29299534
PMC: 5750392.
DOI: 10.1128/mSphereDirect.00554-17.
The role of directional interactions in the designability of generalized heteropolymers.
Cardelli C, Bianco V, Rovigatti L, Nerattini F, Tubiana L, Dellago C
Sci Rep. 2017; 7(1):4986.
PMID: 28694466
PMC: 5504045.
DOI: 10.1038/s41598-017-04720-7.
The loop hypothesis: contribution of early formed specific non-local interactions to the determination of protein folding pathways.
Orevi T, Rahamim G, Hazan G, Amir D, Haas E
Biophys Rev. 2017; 5(2):85-98.
PMID: 28510159
PMC: 5425721.
DOI: 10.1007/s12551-013-0113-3.
Structure-Based Prediction of Protein-Folding Transition Paths.
Jacobs W, Shakhnovich E
Biophys J. 2016; 111(5):925-36.
PMID: 27602721
PMC: 5018131.
DOI: 10.1016/j.bpj.2016.06.031.
Interplay of Coil-Globule Transition and Surface Adsorption of a Lattice HP Protein Model.
Luo M, Ziebarth J, Wang Y
J Phys Chem B. 2014; 118(51):14913-21.
PMID: 25458556
PMC: 4280116.
DOI: 10.1021/jp506126d.
Transferable coarse-grained potential for de novo protein folding and design.
Coluzza I
PLoS One. 2014; 9(12):e112852.
PMID: 25436908
PMC: 4249799.
DOI: 10.1371/journal.pone.0112852.
A simple lattice model that captures protein folding, aggregation and amyloid formation.
Abeln S, Vendruscolo M, Dobson C, Frenkel D
PLoS One. 2014; 9(1):e85185.
PMID: 24454816
PMC: 3893179.
DOI: 10.1371/journal.pone.0085185.
A one-shot germinal center model under protein structural stability constraints.
Raoof S, Heo M, Shakhnovich E
Phys Biol. 2013; 10(2):025001.
PMID: 23492682
PMC: 4777297.
DOI: 10.1088/1478-3975/10/2/025001.
Toward correct protein folding potentials.
Chhajer M, Crippen G
J Biol Phys. 2013; 30(2):171-85.
PMID: 23345867
PMC: 3456495.
DOI: 10.1023/B:JOBP.0000035854.68334.dd.
A dynamical approach to protein folding.
Torcini A, Livi R, Politi A
J Biol Phys. 2013; 27(2-3):181-203.
PMID: 23345743
PMC: 3456581.
DOI: 10.1023/A:1013104123892.
Predicting the tertiary structure of a lattice designed model protein from its primary structure.
Broglia R, Tiana G
J Biol Phys. 2013; 27(2-3):161-8.
PMID: 23345741
PMC: 3456588.
DOI: 10.1023/A:1013185829193.
Energy profile of the space of model protein sequences.
Tiana G, Broglia R, Shakhnovich E
J Biol Phys. 2013; 27(2-3):147-59.
PMID: 23345740
PMC: 3456584.
DOI: 10.1023/A:1013151530254.
Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding.
Wang J, Oliveira R, Chu X, Whitford P, Chahine J, Han W
Proc Natl Acad Sci U S A. 2012; 109(39):15763-8.
PMID: 23019359
PMC: 3465441.
DOI: 10.1073/pnas.1212842109.
Finding low-energy conformations of lattice protein models by quantum annealing.
Perdomo-Ortiz A, Dickson N, Drew-Brook M, Rose G, Aspuru-Guzik A
Sci Rep. 2012; 2:571.
PMID: 22891157
PMC: 3417777.
DOI: 10.1038/srep00571.
Hydrophobic forces and the length limit of foldable protein domains.
Lin M, Zewail A
Proc Natl Acad Sci U S A. 2012; 109(25):9851-6.
PMID: 22665780
PMC: 3382496.
DOI: 10.1073/pnas.1207382109.
Why do protein folding rates correlate with metrics of native topology?.
Faisca P, Travasso R, Parisi A, Rey A
PLoS One. 2012; 7(4):e35599.
PMID: 22558173
PMC: 3338708.
DOI: 10.1371/journal.pone.0035599.